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ABSTRACT

This investigation explores the effects of chordwise forces and

deformations and steady-state deformation due to lift on the static

and dynamic aeroelastic stability of a uniform cantilever wing. Results

of this analysis are believed to have ~ractical applications for bigh-

p(~rformance sailplanes ar.d certain RPV' s.

The airfoil cross section 1s assumed to be symmetricHnd camber

bending is neglect~d. Motions in vertical bending, fore-ann-aft

bend:i.ng, anCl torsion are considered. A differential equation model is

d'eveloped, ~.lhich inclmies t!1e nonlinear elastic: bending-torsion coupling

that accolnpanies even moderate deflections. A linearized expansion in

small time-dependent perturbation deflections is made about a steady

flight condition. The stability determinant of the linearized system

then contains coefficients that depend on steady displacements. Loads

derived from two-dimensional incompressible aerodynamic theory are used

to obtaill the majority of the results. but cases using three-dimensional

subsonic compressible theory are also studied.

The stability analysis is carried out in terms of the dynamically

uncoupled natural modes of vibration of the uniform cantilever. Dynamic

stability in the csse of incompressible strip-theory airloads is deter-

mined in two ways. One is the "V-g method" familiar to aeroelasticians.

When steady deformations are present this methoQ requires an iterative

matching of flutter speeds with estimated speed. The second approach

involves determination of the complex eigenvalues of the aeroelastic

•• Stc:tfGI
i 8101III 0

o

moces at any desired flight condition.
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The aerodynamic loads are



cxpresse,d ill terms of the generalizf:d Theodorsen funct ion: ei~envalueg

of the ;8eroelasti.~ system are locat.ed with a gradient search techni,que.

The eff\:!ct of steady drag on Hutter of nonUfting wings using

in.:ompressible strip-theory is studied and shown to corr~la1:e with

rlre,viously known results. Next, the influence of steady lifting

deformations on flutter is investigated, and flutter modes are fuund

that involve fore-and-aft bending motions. The significance of unsteady

leading edge suction forces, which are predicted by the two-dimensional

incompressible aerodynamic theory, is then examined. Two idealized

example.s based upon existing sailplanes are analyzed.

Steady drag loads lower the flutter speed for larger aspect ratios

but inc.'rease it for aspect rat.ios less than a certain value. Divergence

speed is more sensitive to steady drag. and for very high aspect ratio

wings it can fall below the bending-torsion flutter speed. Steady

deformatio~s due to lift always decrease the flutter speed by an amount

dependent upon the aspect ratlo and the fore'-and-aft blmdlng stiffness.

Leading-edge suction forces increase flutter speed.

Three-dimensional steady and tJDsteady air10ads ar.:! introduced into

the V-g flutter analysis scheme. and for a ~(ach number of zero the role

of steady lifting deformations and unsteady leading-edge suction forces

is more accurately determined. 'l'he behavior predicted using strip

theory loads is again observed, and the suction forces are confirmed to

contribute a significant sr.abiUzing effect. Further c~lctilations using

high subsonic Macb:lumbers reveal only mild effects d"'\e to compreflsi­

biUty (disregarding unsteady chord~lse loads of viscous origin).
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Chapter 1

INTRODUCTION

Aerodynamic loaaa and deformations paralll~1 to the chord arc

usually neglected during studies of ~eroelastic stability of liftin~

surfaces. Furthermore. dynamic stabiUty is u~;ually analyzed'.lithout

regard for the influence of st~ady de'foT:llatlol1ls due to steady -state

1Ht,

Very little Hteratu're exists \I'hieh tre~lr.s chord!i'ise [IflTces and

bending ill an neroeLastk a08l;"8is. A subsr,antial stud..• oli th2 effects

of d~ag iu~d5 vn divcrK'.!nce of a canti lever wing is made lily Petre (R~f.

2. pp. 1.49-487). Here it is clearl'~' de1iACmstr.ated that ',';he interaction

of drag with bending deformations due to lif~in~ load~ can signifi­

cantly reduce diver~ence speeds. Goetz (Ref. 17) e0/lsidered this same

drag-bendin~ deformation divergence m~chanism, specialized to ~he case

of a rigid lifti~g surface at the end of a beam-rod. This work involv~

supersonic flO'J past a surfac~ hllvln~ a blunt le.adin~ edge, and the

resulting siz~abie drag forces ~auseo a si~nificant reductxQn of the

classical divergence speed.

On~ exa~ple of an aeToelastic sturiy in which chordvise d~formations

of ii !lti"~ight canti lev~::- "lnSt are accoun:-ea fot' is the work in the arlM

of tilting proprotor aircraft by Wayne Johnson. The cru!sin~ fli~ht

condition (Ref. 27) is modeled usin~ a proprc.tor with axial flow mounted

at the tip of a CAntilever wln~. The additional d~~rees of freedom

associa.ted with the individual elastic rotor blades arid the aerodynamic

and inertial effe~ts: of the proprotor result in a much IllOre cOl'lplex Imd

specia11~ed dcroelastic analysis than is considered here.
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The effecc which steady chordwise forces can have upon dynamic

stability was explored by Petre (Ref. 3) and Petre gnd Ashley (Ref. 1)

using two-dimensional incompressible unsteady lifting airloads. The

latter work presents extensive calculation's regarding the effect of

steady drag on bending-torsion flutter of a uniform cantilever wing.

It serves as the starting point for the work pursued in this thesis.

The objectives of this thesis are as follows:

i. To ch~ck and interpret the predicted effect of steady drag

on the flvtter behavior of a nonlifting wing discovered in

Ref. 1. using a modal approach instead of ~ collocation

.'lpproach.

2. To generalize the equations of motion to include consistently

fore-and-aft bending motio~s. adequately accountinR for the

elastic cO\Jpling among the three degrees of freedom.

3. To in~:lude steady-scate lining defonnations in the dynamic

stability analysis by conside~in~ small time-dependent per­

turbation deflections about a steady di~placement solution.

4. 10 allow for unsteady legdin~-ed~e-suction forces in the

chordwise direction predicted by two-d!cmensional incompressible

unsteady potential flow tht~ory.

5. To improve the representation of both steady and unsteady air­

loads hy use of a three-dimensional subsonic kernel function

program, from which leadtn~-edge suction and induced drajt can

also be obtained.

Items 2. 3, and 4 are interrelated and to~ether represent a cons~s­

tent: extensiDn over preVious research in the modeling of tbe physical
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system. For examph.-. when s[c.-ad,· ld[~r"l bcndin~ deiQInIo"lt iQn~ ;lr,r

present. unsteadv chordwbh~ loads c.:"tO lndun- [Vllit Int:: l:ID~ Ions which

significantl,· affect dvrMllIh- st~lblllt'·. Th,' 1l1o'11n purpo!4" ~\"rt> will

be to establ ish trends and ~llin fundalllent.\i In~iy.ht int" th..• inf hwn.....•

of ChoTdwise forces and stt>ad,· dl'io","l[ ions. hopeful h- "twddin): 11da

on their importance in pract (cOli ,ll'r"~r"lC,~ s'r.1hh·llt.....

Certain assumpt ions are adht.·n-J t.' throu~hNlt th is tht.-l'is _ SinC't'

the emphasis is upvu workin~: from tht> t.·qu.. t ions ,tl MOt ion in d~ fh'rt.'n­

tial fonn in order to include ('t~rt.tin nonline•• l'" t.·I;lst ie ,-,'url in~ tt.·nn....

it is convenient to restrict this stud... ~o str;;tl~ht ,';mt i level" win~!t

havin~ mass aorl stiffness prop('rtit'$ uni form with sp.m. The ""in): is

taken to be a one-dimensional structure in the senSt' that all defo~~­

tions are described as functions of the spanwist.' variable .... ~ambt.'r

bending is neglected and the simple Euler-Bernoulli beam stres$-~train

assumptions are used, The platform is rectangular. and the stead\- and

unsteady flow fields ar~ always assumed t~ be superposable: unsteadv

loarls are computed for the undefonned geometry and clppl.ied to the deflDrmed

wing. Although these assumptions would be restrictive for the purpose

of modeling actual structures. they are acceptable her~ since only the

relative influences of chorawise loads and steady deformations are of

interest.

In Chapter II a vertical-bending/torsion model basic to the system

of Ref. 1 is developed and modal equations are derived to permit flutter

calculations for zero steady Uft with st:eady dra~ included. Assumed

mode solutions are then compared with results of Ref. 1. A linear

steady-state version of the modal equations is then examined to allow

computation of divergence speeds as affected by steady dra~.

3



In Chapter III a model central to this thesis is developed that

includes vertical bending, chordwise bending, and torsion. Nonlinear

steady and linearized unsteady differen~ial equations are then deduced,

and they are analytically compared with 'Lohe lUodel in Chapter II.

In Chapter TV the modal forms of these steady anQ linearized

,unstea~y equatl.ons are set up to inclu~e lifting airloads deduced from

inc08Ipressible s,teady and unsteady strip-theory. A scheme based on the

!w-called V-l~ lIN!thod of flutter analysis is used to determine neutral

dyn4llllc stabUity c~.mditions, and results are checkec! against those of

Chapter II.

In ChaptElr '\' a generalization to the case of arbitrary motion in

time is presenteel through LaplaCe transformation of the modal equations,

which requires incompressible unsteady two-dimensional airloads valid

f~r non-periodic motions of the wing.

Adeterminant lt~ration procedL.e is used to determine the aero­

elastic elg~nvalues for flight speeds above and below the flatter speed.

Fir.al1~·, the effect of unsteady leading-edge suction forces predicted

by incompressible strip theor)· is included in the linearized unsteady

stability syst~m.

In Chapter VI all results for incompressible strip-theory airloads

are assembled and systematically presented, concluding with \~o examples

oased upon actual sailplanes.

In Chapter VII the flut ter speed predic tion scheme of Chal)ter IV

is modified to use three-dimensional subsonic steady and unstpady ~

lifting airloads. Results are presented to indicate the effects of

three-dimensional aerodynamics, unsteady drag, and compressibility.

4



In Chapter VIII the principal conclusions of this thes~s are

presented.
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Chapter II

ORAG EFFECTS ON FLUTTER AND OrVRRGENCE;
DEFORMATION IN VmnrCAL BENDING AND TORSION ONLY

A. ~}·tical Be.ndi.ng/Torsion EquatiOt1S

In the Petre and Ashley work (Ref. 1) the et'feet of drag on flutter

of canti1l:wer wings is st.udied assuming only vertical bending and

torsion about the elastic axis. The equ8tions are cast into integral

form, and 30lutiol\s are obtained hy collocation of the. integral equations

at ten stations across the span. Here we check the results of Ref. 1

using an entirely different, modal approach. The results also serve as

exampl,"swith which to compare solutions found with the morc general

system. developed :In the following chapter., which includes chordt~ise

bending.

The differential cquntions of hending and torsion, as given in

Ref. 1 and adapted to the present nllLiiti.~~>1 ~nd I"oordinate system (as

in Fig. 2-1). are

(2-1a)

:~

.1!!.'

(2-1b)

= 0

\



The quantity Mz
is a function of y given by

(2-2) M
z

g,
Iy IHn) (n-y)dn

D ~[.Q.-yJ2

where it ~.s assumed that the ~unning drag force D has constant magni-

tude across toe span. M can be recognized as the total mome~t about
z

the vertical axis applied at station y by all drag acting outboard

of thiR station. Mean values of the twist and bending displacement

are assumed to be zero.

Equations (2-1) are linear and are coupled inertia1ly by the third

term in each; these terms arise from the offset of the center of mass

of the girfoil section from the elastic axis. A second coupling effect

is due entirely to drag, introduced through the terms containing M
z

All remaining terms in the equations represent the cor.ventional elastic,

inertial, and unsteady lifting aerodynamic load contributions.

The manner in which the dra~ loads have been introduced into the

system is discussed by Petre (pp. 449-487, Ref. 2) snd can be explained

by the following physically oriented argument. The drag coupling term

in the bending equation arises from the resultant bending moment m (y)
x

applied at station y due to drag forces outboard of y. As shown in

FIg. 2-1, a drag force acting outboard of station y has a component

D<I>(y) perpendicular to the airfoil's principal axis of vertical bending,

giving a resultant moment at y about the principal direction of

2m (y) N <I>(y)D I (n-y)dnx y

.. <P(y)D ~(2-y) 2

,., -Mz<P

8



The moment-curvatu~e ~elation for the beam,

m
x

EIx

together with moment-shear equilibrium

(here q(y) is the positive-upward running load in the p~incipal

direction of the section) allows the drag effect to be expressed in

equilibrium with the elastic term as

o

This is the same drag coupling term appearing in (2-1).

A similar derivation reveals the origin :If the drag term in the

torsion equation. Looking at the front view of the winr, (Fig. 2.2) one

can see that a drag load at n glves rise to a twisting moment at y

'by acting through the moment arm given by distance e,

[
dW 1

e = wen) - w(y) + dY (y)(n-Y)J

The resultant torque applied at station y by all drag forces acting

outboard is given by

D f
y
t (w(n) - w(y) _ ~; (v) (n-y)]dn

Differentiating with respect to y.

9



dTy(y) .. D f9.[ _32w~y) (n-y) _ 3w + 3WJ dn
dy y dy ()y 3y

'" -

Elastic equilibrium for a rod loaded with applied torsion Ty(y) 15

given by

~ [GI 3c1>] _ .3Ty (y) a
3y d 3y 3y

The drag coupling term of equation (2-1) can then be identified in

the result

B. Solution By Assumed~

When structural dynamics problems yield solutions whpse frequencies

are within the range of the structure's lowest normal mode natural

frequencies and the latter have a sufficiently sparse distribution,

modal analysis methods prove to be effe~tive. Primary bending-torsion

flutter of cantilever wings, under study here. is a classic example in

aeroelasticity of such a system. Inclusion of steady drag effects

should ha'7e only a small effect on the range of frequencies over which

flutter solutions occur and, by this reasoning, should not adversely

affect the convergence of modal solutions. Petre in Ref. 1 expresses

10



the opinion that methods relying on the assumption of a few prescribed

deformation modes constrain the flutter mode shape and should be avoided.

This opinion 1~ tested herein by actually studying modal convergence.

Solutions of (2-1) are sought using superposition of the dynami-

cally uncoupled natural mod~s of free vibration in bending and torsion

of a uniform cantilever bealn. These assumed modes, with their relevant

properties, are described 1n Appendix A. Although not true normal modes

of the inertially-coupled structure, they can be considered as "pseudo-

orthogonal" since integrals l)f the type

f0
1
m f f d- O i ~ j

wi Tol j
Y

l l
J f¢ 'f¢ dy 0 i .;. .i

0
i j

lesd to uncoupled ela3tic behavior and hence A diagonal stiffness matrix

i~ the matrix eigenvalue problem. Use of the actual normal modes would

require that they be calculated for each win~ configuration i~tudied,

Since the assumed modes satisfy the nai.u"L<iJ. boundary conditions at the

free end of the cantilever 85 well as the geometric boundary conditions

at its clamped root. Galerkin's method can be applied to the differential

equations (Ref. 4, p. 218) to obtain the system in terms of modal

generalized coordinates.

To find the velocity for neutral stability (the flutter velocity),

the V-g method (p. 381, Ref. 5), common in aeroelastic stability

analyses, in employed. With simple harmonic motion of frequency w

the unsteady, incompressible, strip-theory lifting airloads are

expressible as [(4-123) and (4-124) of Ref. 5]

11



(2-)a)

(2-3b)

where

(2-4) 1
2i

L • 1 - - C(k)w k

I :l

I L = \ -- -- [1 + 2C(ll.)1
¢\ k

\

2- V C(ll.)

M ... l:i
w

Here C(k) is the familiar Theodorsen function of reduced frequency

wb
k - V .

The drag coupling terms in (2-1) can be treated as applied loads

in developing the modal equations. by defining total applied force and

moment in the bending and torsiG~ equations as

(2-5a) F (y,t)
1.

(2-Sb)

Incorporation of artificial structural damping g by allowing a complex

elastic modulus produces the system

(2-6a)

(2-6b)

a"w a2w a2<bEI (1+ig) P + ro p - s ~t = F (y,t)
x Y t eo z

12



Formal ~evelopment of the modal equations begins with substitution

of the series expansions for wand <P in terms of the assumed mode

shap~, functions and generalized coordinates. With the same number n

of be,nding and torsion modes always used, the system order will be 2n

Generalized displacements are assumed to have simple harmonic time

dependence, giving

as for torsion they are dimensionless.

Generalized displacements for bending modes have units of length, where

Galerkin's method involves substitution of (2-7) into the system

n iwtw(Y. t) = l.: f (y) qw e
1=1 wi i

11 illlt(j>(y.t) = E f(jl (y) q41 e
i=1 i i

(2-7b)

(2-7a)

represented by (2-1), (2-2). (2-3), and (2-4) and then multiplication

'­,

of each term in the bending equation by f Wj and each in the torsion

equation by f$j' followed by integration across the half span. With

eiwt cancelled the resulting system is

/"
n

II}"
n

(2-8a) EI/.l+ig) L f' ; , , i qw dy - m:.o2 L f f
wj ~i

dy
0

i=l Wi w
j i 0 1=1 Wi

Ig.
n

1 !L+ w2
S E f¢ f q¢ dy = iwt ~ F (41.w;t)f dy

e 0 i=l Wi Z w
ji i e

(1 ~ j ~ n)

[R.
n

/"
n

(2-8b) Gld(1+ig) E f' , of q</J dy +- Jw2 E fl/l fep qrj> dy
0

i=l $i $j a i=1i i j i

f9.-
n

1 9-_ w2
S E f fljl qw dy = - iWt 1

0
m,,($.w;t)f

41
dye 0 Wii=l j 1 e - :I

13



The generalized forces can be arr8n~ed in terms of dimensionless unit

generalized forces Q
ji

through the following definitions:

R. rn qwi . n ] 1wt
(2-9a) / F (iP,w;t)f dy '" fipw2b 1 f., t Qj i 'T + E Qj Hnq... e

(' Z wj Li=l • i-I' '1'1

(2-9b) [n qw ". ,]
R. 2 II 1" iwt

/0 my(¢',w:t)f~ dy = i!pw h ~ E I)j-fn i b + E Qj+n i+nq¢l e
j 1=1' i=l' i

The modal integral in the first term of (2-8a). inte~rated by parts

twice and with application of cantilever boundary conditions, yields

= 0 for i ~ j

From Appendix A. the i=j term can be expressed in terms of the natural

frequency of the jth assumed bending mode by the substitution

(2-10)

Similarly, integrating the first term in (2-8b) by parts gnd introducing

the hatural frequency

(2-11)

w~ of the jth assumed torsion mode leads to
j

f <l>j dy ::: l0 (i ~ j)

- ~ Jw l
¢' t (i = j)

j

Insertion of (2-9), (2-10). and (2-11) lnt\) (2-8) and f'Jrther use

of modal orthogonality properties gives

14



(2-12a)

(1 ~ .1 ~ n)

w2 co a
w 'w "W Se

.....!!-. (1+1,g) . 1 --:.:i _~ ...::.1 + _ ~
ITpb" 17" b ITpb"" b bm ITpb'"

(2-12b)

n

r Q~+n Hn qljl
i=l ." i

o

where the ben~ing equation has been divided through by IT~u2b3~ and

the tors:l.t:>n equatlon by rrp(Jlb"~. Inertial coupling, a consequence

of nonorthogonality between bendinp; and torsion assumed modes, produces

terms in the modal integrals

(2-13)

For now it is ~onvenient to reference w to the fi.st assumed

torsion mode natur~l frequency wljl • Assumed mode natural frequencies
1

(Appendix A) are

(2-14)

2 -1
.=.t..-=.

2

Ratios that are useful are then
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I'

(2-15)

The transcendental N
j

are given in Appendix A for 1 ~ j ~ 5 •

The equations can be nondimensiona1ized through the fo11owinR

dimensionless parameters, chosen to be as consistent as possible with

Ref. 1 not~tlon.

M - m=TIpb 2

(2-16)
EI b2

P _ X
= GfiT

d

s
S - e

= bm

i - J= =<'"'TbCt m

Frequency is nondimensi()nali:~edas in Ref. 1 by defining the frequency

parameter

(2,·17) Z _ (1+ig)Q2

Substitution of (2-15), (2-16), and (2-17) into (2-12) y1el~s the modal

equations in a suitable form for computation.

(2-18a)

(I2 j 2 n)

16



(2-18b)

n

+ r Qj+n.i+n q~i • 0
i-I

The flutler determlnant. of order 2n. results as a ne~er.sary condition

for a nontrivial l:>l'l\n:ion and leads to a complex ei~~l\vl\lue pt't'b"'{~m to

determine Z.

Next, the unit ~lene:t'alized forces Q
ij

mu.st be expressed to allow

numerical computation. Combining (2-3). (Z-4). and (Z-7) into (2-9)

leads to

(2-l9a)

•

n ~ a2 n
r f.+, (y)f (y)q~ dv} + J: "y2 [~V2bCn<R-y)2 r fA. (y)q,j, ]

i=l 'l'i wj 'l'i 0 0 - i.=l "'i 'l'i

(1 ~ j 2 n)

f (y)dyw
j

(2-19b)

After further reduction, with

17



and carrying lout remaining differentiations in y • (2-19) becomes:

(2-20a)

(1 ~ j ~ n)

(2-20b)

c ~ n
+ 2n

D
k Z f1(1-y) 2f " (y)f", (Y)dY~bi + L {[M",-(~+a)(L.+.+M )

o wi "'j i=l '" 't' W

n ~i n
.. L Q -+ E Q q

i=1 j+n,i b i=1 j+n,i+n ¢>i

Here, integr21s in the spanwise variable y hav€ been non-

dimensionalized. Four different types of modal integrals are encountered,

including the I
ij

previously identified. The three new forms aris&

from the drag coupling terms and are

1(2)
ij(2-21) fOl(l-Y)f~ (y)fy (y)dy

i j

1(3) = /1(1--)2 fll CH Cy)d-y
ij 0 y lP y w

i j

18



The modal integrals in (2-13) and (2-21) were numerically computed to

twelve significant digits for 1 ~ i.j ~ 5 .

Two additional dimensionless paralueters can be introduced. again

drawn from Ref. 1.

(2-2Z)

The drag parameter C is defined as the applied steady sectional dra~

coefficient divided by the sectional lift curve slope (ZIT for

incompresible strip theory).

After (2-20). (2-21), and (2-22) are combined with orthogonal

modal integrals recognized. the unit generalized forces are found to be

Q. '+nJ,1.

{~w (i=,;)

(i;fj)
-

- [L - AL )li , e
[21 ij - 4 1 (2) + 1(3) ]

W J +i?" 1J ij

(2-23)

C (1)
- [M - AL ] r . . +...-T

k
1..

w W 1.J 1.J

(i=j)

(i4j)

The depend only upon k, A. and C • Actual computation of the

Theodorsen function is accomplished by direct use of the ascending

power series of the modified Bessel functions Ko and K
l

, as explained

in Appendix B.

Equations (2-4). (2-18), and (2-23) together supply the flutter

determinant for the VT system using assumed modes, given in matrix
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form in (2-24). Solutions can be found using from one to five assumed

modes in each of bending and torsion, and the maximum order of the

determinant will be 10.

-MS! + Q
no 2n.n

'"' 0

-HSI ln
+ Q1. 2n

+ Qn.n

M[ 1 - (N
l

Il»4p i.('Z 1 +

~ ~ ,

l-O~M[l -(N IT)4pi Z]
~'l. 0

-MSl ln + Q2n.l

(2-24)

In seeking solutions, values for M. P, i o ' A, and S must first

be chosen to specify thE wing configuration. Then. for any desired

value of C and an estiwate of reduced fr~quency k , co~lex eigeo-

values Z can be found from (2-24) via linear Il1atrix ei.~envalue techniques.

A computer program is used to solve for flutter conditions as

follows. With a first estimate of k chosen large enough so that the

structural damping,

(2-25) g
Im(Z)

R.!(Z)

is negative for all 2n eigenvaluE~s, successively smaller values. of k

8:re assigned and eigenvalues computed until a positive g is obtained

for the eigenvalue corresponding to the aeroelastic mode which encounters

flutter. Then a zero-finding subrolhtine locates k fOT w'hich woO

for the flutter mode. Dimensionless! speed and frequency~ dl~fined by

20



(2-26)

f"I =.o~ J
.G - uk GI

d

can easily be computed for the flutter eigenvalue by

(2-27)

The flutter mode shape is also found, since it is related to the eigen-

vector of the eigenvalue yielding the flutter condition.

C. Comparison of Mod~l with Collocation Results

A rather thorough study was carried out in Ref. 1, covering a wide

range of practical combinations of the dimensionless parameters. The

pl'esent objective is not to recalculat~ all of the same data but rather

to evaluate the effectiveness of the assumed-mode approach. Consequently,

(2-24) has been solved at conditions parallel to ones for whi.ch results

are published in Ref. 1 to offer direct comparison. Also (2-24) is used

to verify the performance of the VeT

next chapter.

system developed in the

A comparison of assumed mode calculations with Ref. 1 results is

presented in Table 2.1 for three different configurations. Of these,

cases (a) and (c) r~present a stubby low-uspect-ratio wing (with P = .4)

whereas case (b) is the opposite extreme of lar~e aspect ratio. A
EIxtypical ratio -- 0= 1. 6 , for example. would fix the aspect ratio ofGI

d
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cases (a) and (c) at 2 and of case (b) at 20. The mass ratio para-

meter of cases (a), (b) is in the regime encountered by sailplanes

whereas in (c) it is representa~ive of conventional «ircraft. Finally,

the steady drag parameter' is zero in the first two cases but hils the

extremely large value C = 0.04 in (c)

In all cases n=3 already yields adequate modal convergence.

For the large aspect rati'J case the use of one assumed mode (nal)

gives a significant error, yet n=2 produces good accuracy. This

suggests that the second bending mode is an important faccor in flutter

of high-aspect-ratio wings, a phenomenon discussed in Chapter 6.

Additional comparisons between flutter speeds and fr~quencies

found by the two methods are offered in Table 2.2, emphasizing tteir

relative accuracy as steady drag is increased to the very high value

C '" 0.04 Evidently good agreement is maintained in the presenc-" of

drag.

The mode shape at flutter for two of the preceding cases is

presented in Table 2.3 for wings of small and large aspect ratio, each

with C = 0.04. kmplitudes of the ten generalized displacements are

and the p~as~ ang~c~ are referenced

For P '" D.4 only q$ and qw
I 1

have appreciable magnitude, whereas the large-aspect-ratio example

normalized with respect to IQIj> I ,
1

to the phase of this torsion mode.

displays a significant contribution by qw ~s well.
2

These flutter mode shapes can be compared tl) the Ref. 1 results,

with some effort, as follows. In Ref. 1, the tangent of the angle by

which the tors:!.onal displacement at the wingtip leads bending displace-

ment in the flut ter m~de is tabulated; it i·; converted here to an angle
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in degrees. The spanwise shape of the bending portion of the mode at

flutter for the two Table 2.3 cases is illustrated in Fig. 5 of Ref. 1.

Since the flutter mode's bending displacement obtained in that treatment

was complex, its amplitude at each spanwise station was taken, phase

differences being neglected in the figure.

For the present solutions a similar assumption is made to display

the bending mode shape of the P 0.004 case in Table 2.3. Contribu-

tions of qw and qw have been added vectorically at points along
1 2

the span to allow comparison of bending amplitudes with the Ref. 1

figure. For p; 0.4 , of course, only the first bending mode contributes

significantly and phase differences are negligible.

The comparison of bending flutter mode shapes appears in Fig. 2--3,

where amplitudes are normalized to unit torsional displacement at the

tip. Phase angles 8 between bending and torsion at the tip are also

compared. At low aspect ratio excellent agreempnt for phase angles and

mode shapes is observed, with mild disagreement in the bendin~ mode

an~litudes. In the p; 0.004 case, for which the Ref. 1 solution was

made using only five spanwise collocation points, a si~nificant disa~ree-

ment in mode shapes and tip phase angles is observed. In spite of this

discrepancy. the respective flutter speeds differ by only 0.82%. For

all large-aspect-ratio cases compared this sort of discrepancy in flutter

mode shapes is observed. where the second bending mode plays a significant

role and causes appreciable phase differences in bending deflections

along the span. Mode shapes at flutter are analyzed in more detail

in Chapter 6.
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D. Divergence Including the Effects of Drag

One further application of the VT linear model is predicting

the effect of drag forces, steady in direction and magnitude and uniform

acrosS the span. on static aeroe1astic stability. Removal of all time-

dependent terms in (2-1) and ~nsertion of simple strip-theory steady

incompressibl~ aerodynamic loads gives

tw a2
(2-28a) EI 0

2IIpV 2h<l> (MzrPo ) = 0x ayq - 0 +a?

a2 (j> aZw
(2-28b) 0

2JlpV2 b 2Atjl - 0 0Gld~+ Mzayr=0

Subscripts ~mphasize th~t deflections are static quantities.

As in the foregoing dynamic analysis, deflections are represented

by assumed modes and a system of 2n modal equations is derived, which

has a nontrivial solution only if the determinant of the matrix of

coefficients is zero which yields the divergence speed with drag effects

included. For brevity, since the manipulations involved are quite

straightforward. the final form of the stability determinant is

presented here.

II~Nl>pi H 1 '<".,
- [2(1+Cll11 ] - [2(1+e)11 ]

~~
+ Cl(3)_4Cl(2) + cr(3)-:C1(Z)

11 11 In In

! I
I
I
I

- [2(1+e)1 1 ] -r2(1+Cl! ]~ Pi M
+ cl (3)::CI (2)o rrl>N 4 a + Cl(3):4C1(2)L ~ ---ur

n D n1 n1 L nn nn
(2-29) - - - - - -, - laM - - - - - - - - - - - - =0

c1(1) - c1(1) TI 2 .. ...,
"8 ~- A

• 11 1 1n U 0...
I I D~"'"".~

C1(1) C1(1) f\- rr l 2 faM
n1 nn ~ T(n-~) IT - A

~ "D
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Solution of this determinant for its largest eigenvalue gives the

divergence speed un' This is of interest in the ensuing work,

particularly for studying dynamic stability of wings having steady-

state lifting deflections in the presence of drag. which can reduce

divergence sp~ed considerably.

For zero steady drag (C=O) the classical divergence speed comes

trivially from (2-29). which degener~tes for C = O. The classical

divergence mode shape is just the first assumed torsion half-sine mode.

and the first tor~icn mod;)l equation uncouples to give the divergence

speed,

(2-30)
~

n;~

tVhen A is decreased to zero this classical divergence speed becomes

infinite; yet when C # 0 (2-29) will still yield finite solutions

with A = 0 •

A ~irect comparison of solutions of (2-29) with Ref. 1 results for

the effect of drag on divergence is presented in Table 2.4. Modal

convergence is satisfactory, but the modal approach appears to differ

more significantly from the Ref. 1 analysis for divergence calculations

than for flutter results.
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[ J -
Case n U

F I"lF % Differenc.e
of UF from n=5-

(a)

M = 10.0
, 2.7175179 1. 31Q52t19 0.239%..

p '" 0.4 2 2.7239548 L 3114559 0.00239%
1 = 0.25 3 2.7240004 1. 3114641 0.00072%

CL

S = 0.1 4 2.7240178 1. 31146i'3 0.000077%
A = 0.1 5 2.7240199 1. 3114675 --
r. '" 0.0

(Ref. 1) 2.699 1.309 0.918%

(b) .
1 4.2621908 0.842707 4.29G%

M =10.0 2 4.0842768 0.8849367 0.0576%
p = 0.004 3 4.0864182 0.8850560 0.0052%
! = 0.25 4 4.086'6066 0.8850659 iJ.000597%

CL

s = 0.1 5 4.0866310 0.8850660 --
A = 0.1
G = 0.0 (Ref. 1) 4.032 0.886 1. 337%

.

( c)

M = 40. 2 4.2.60823 1. 2940:n 0.00155%
p = 0.4 3 4.260879 1. 2940232 0.000235%
i

CL
= 0.25 4 4.260882 1. 2940250 0.00016%

S = 0.1 5 4.260889 1.2940236 -- JA = 0.1
C = 0.04 (Ref. 1) 4.199 1. 293 1. 4525%

TABLE 2.1 Comparison of Assumed Mode and Collacation Methods fot'
Predicting Flutter Speeds and Frequencies for Tnree
Configurations

26



Case C
UF OF

n = 5 Ref. 1 % n = 5 Ref. 1 %
Difference Difference

p .. 0.4
M .. 10.0 0.0 2.7240 2.699 0.93% 1.3115 1.309 0.19%
i ;,-: 0.25 0.02 2.7830 2.753 1.08% 1. 3071 1.305 0.16%

Ct

S .. 0.1 0.04 2.8623 2.823 1.37% 1. 3024 1.300 0.18%
A .0 0.1

p .. 0.004
M "" 40.0 0.0 7.1778 7.127 0.71% 0.8651 0.875 1.14%
i .. 0.24 0.02 6.8588 6.797 0.90% 0.9074 0.919 1. 28%.x
S .. 0.1 0.04 6. 7704 6.715 0.82% 0.9223 0.934 1.27%
A .. 0.1

TA.BLE 2.2 Effl:\ct of Drag on Agreement of Nodal Analysis with Ref. 1

P = 0.4 P = 0.004 I
Generalized

i IDisplacement Amplitude Phase Amplitude Phase

qw 0.71276 219.62° 1.4515 195.46·
1

qw 0.00132 21. 95· 0.6288 217.24·
2

C1w
3

0.0000271 150.13· 0.00449 20J.35·

Qw 0.00000408 ll.7.28· 0.000674 -10.94 0

I4 IC1w
S

0.00000213 163.4r 0.000189 lSi' .·H °

qep 1.0 O· 1.0 O·
1 I

qep 0.01503 222.02· 0.01454 147.11 <>

2
I

<1<1>
0.000808 215.78 0 0.01786 210.39°

3
qep 0.000773 221. 31 0 0.00930 210.13'

,4

qQlS
0.000186 217.90· 0.00462 211. 71"

--
TABLE 2.3 Flutter Node Shapes for Low- and High-Aspe'.::t-Ratio Examp1.es.

(N .. 40, i ex = 0.25. A .. 0.1. S .. 0.1, C = 0.04)
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C .. 0.02 C .. 0.04

% Difference % Difference
n U

D
From n .. 5 U From n .. 5

D
-

1 4.58288 2.044% 3.90105 1.999%

2 4.'.8660 -0.0999% 3.81863 -0.156% I
3 4.49174 0.0144% 3.82465 0.0017%

4 4.49061 -0.0094% 3.82403 -0.0144%

5 4.49109 -- 2.82458 I --

(Ref. 1) 4.66 3.63% 3.96 ~42%_.

TABLE 2.4 Comparison of Ref. 1 Results With (2-29) Solutions for
ni~ergence Speeds in the Presenc~ of Drag. (p .. 0.004,
tot:: 40., i a " 0.25, A .. 0.1). (For C" 0, UD " 11.1072)
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-y=o

y=J.

:_._---'=r=,
SECTION A-A

FIGURE 2-1 Physical Origin of Drag Coupling in Eq. (2-la)

dw
dy (yJ

\

y

FIGUlU: 2-2 Physical Origin of Drag Coupling in Eq. (2-1b)
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Chapter III

DEVELOPMENT OF A GENERAL SYSTEM OF EQUATIONS FOR
VERTICAL BENDING/CHORDWISE BENDING/TORSION (VCT)

A. Introduction

Chapter II includes drag loads in transverse hendinR and torsion

but allows nCt chordwisc deflections. In other words, it assumes

infinitely large bending rigidity in the fore-and-aft directhm. In

t:h15 chapter we consider chordwise bLmding. which is a more complete

model of the true physical situation.

A review of th~ literature for work con~ernin~ VeT motion of

slender cantilever bearn.s led to the field of hinl:eless helicopt.er rotor

stability analysis. The structural modelin~ of a hin~eless rotor is

essentlall~' the same as desired here, eXC'.ept that the \o"injt has no rota-

tional vel~citv. Accordin~ly, if an ~dequat~ model for a hin~eless

rotor can be found. it can be adapted fo," the cantilcver winr. by removlnJ:

the inertial and (~/~ntriful:al tt.~nsion efh"~·ts aris1n~ from rotation.

~Iuch (If thiL' ,,,ork pursued In the hin~eless rotor field includes

simplifications Ioolhich either eliminate or restrict onc of the three

tvpes of deformation, often torsion, in an effort to reduce compl~xitv.

This leLl'r-es a n~lativel? slll:Ill bod~' of work tilat t r('O\ts the full clast Ie
\

prohlem. A wel~-kn~n system of linear partial differential equations

for coupl~d elastic torsion and bendin~ of t~iste~ nonuniform rotor

blades is that df.!veloped by Houbol t and Brooks (Ref. 6): the iiiiLt'il

effort to cievelop a VCT system for the cantilever win~ centered on

adapting thi:;; fonnulation. In the course of this work, however. the

elastic coupling t~rms were found to be insufficient to account for the
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drag loads in transverse bending and torsion embodied by the terms

contp.ining M in (2-1)" It then became apparent that this dr.ag
z:

coupling is act~ally a nonlinear structural bending-tersi~n effect and

that the new system of equations to be developed should, of necessity,

retain all nonlinear elastic couplln~ te~ navlnR the same order of

import4n~e 8S these dra~ coupltn~ terms.

Further search led to tbe system of nonlinear equat~on8 f~r ~18ted

nonunlfora rotor blades derived by HodRe. and Dowell (Ref. 7). This

work tnvolv~6 develo~nt of 3 DOr~ coaplete stratn-d~splaCeDent rela-

tlon than thot of Ref. 6. vhich is ftecessarr to obtain thc clastic

bending-torsion coupllnR teras that produce the de_ired drag coupltnR

effect. rae equatlonG in Ref. 7 are valid for 8traight. slender.

h~~g~neous. isotropic bemwl underaotr.~ DO~erat~ dlaplacl~t•• accur3te

to ~econd oraer In the At~8e of a rewtrlrtlon that sq~~res of bendin~

:Blo~s. [vist. and alrfoU cho..d and thlcknt!S8 dividN by vin~ sftlhtpan

are s.mll vitlll r~5pect te, unit".

Although the final fo ... of th.t eqUll~lon. presented In 1t.eL l' .1""t

apr'~ar t~ be l-.edlatelr IIdupub!(!' to the present C4S~ b;.' sett!alt the

rotor l"Ota(;ion frequency to zero Imd reaovln~ the eH~cu of pretvlst.

this b not entirely true. One itI.po~t'int 4Ssua~tion by Hodges nnd Dowell

required that the r&:!Q berween the transver8~ and chordvlse bema bendin~

stiffnesses be a quantity of order one. Whereas this is a standard

feature of hel'icopter blade construction, 'i t usually does not hold for

canventional aircraft wings of any aspect ratio. As a result, the Ref. 7

derivation has been carefully retraced for tbe specific case of a non­

rotating cantilever win~ having arbitrary bending stiffness ratio. The

development is outlined in the following section.
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B. Development of the Nonlinear Equations of Motion

Derivatj,on of the veT model for the uniform cantilever wing is

presented here in abbreviated form. Important modifications of the

Ref. 7 derivation are emphasized, but duplicate manipulations are only

briefly described. The notation and coordinate system for the canti­

lever wing is used exclusively.

The basic ordering scheme presented in equation (4) of Ref. 7 is

retained. One exception is that spanwise warping of the cross section

duo? to twisting. represented by a warp displacement function which is

a solution of the Laplace equat:l.on over the cross section, il; entirely

neglected here. This ass~ption is made on the premise that a typical

aircrCift wing airfoil section would have a sufficiently small thickness

that warping effects would be negligible within the second-order frame­

work. The ordering scheme is applied to the energy expressions encoun­

tered in the varistional derivation of the equations, to determine which

terms should be retained and which discarded.

The nonline~~ strain displacement relations developed in Ref. 7

have been carefully ~xamined in the context of the present problem, and

they are found to apply without modifications. These relations are

deri.ved from an exact transformation bev;:een the deformed and undeformed

coordinate sytems and originate from the classical definition of strain

of Novozhilov (Ref. 19) which is based upon increments in the deformed

coordinates. After approximation to second order consistent with all

assumptions, the final form in telms of engineering strain and in the

present notation is
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[
., .,,. ,.u u

€v .. u' +~-
+ _z__

U" [ ~CO~O .t- flS t n~ I
.Y Y 2 2 'it

- u"(- ~sin~ ... f'lcos$l

J
z

(3-1) £).E; .. fl~'1

l E:.; .. - [Q'
~'TJ •

These can be reco8nized as identical to equatl\.ons (24). {25). (26). and

(27) of Ref. 7 after t~e warp function and pretwiBt 3ngle have be~n

eliminated. The displacements u • u • u of I':h~ elastic axis and th~'x y z

principal coordinates (. fl of the cross section are illustrated in

F.lgure 3.1.

Develoreent of the cq,mtiQns uslnR the indirect ~thod of the

calculus of variations is based upon Hamilton's principle. which may

be stated in the form

(3-2)

The equations aTC obtain~d by combinin~ expressions for the first

variat:ion of strain energ~' {ill. kinetic energy 6T. and virtual work

of exten;al forces otl'.

The first variation of strain enerlty in appropriate f.Ol'1ll for the

standard Euler-Bernoulli beam uniaxial stress-ntrain relationship i~

(3-3) oW .. r
i 1f (0 {;£ + 0",:,: {i£:".,1:' + 01'''' 6ty .,,)d( dn dy

o area YY YY . . <. .• , 'I

The first variation of the engineerio~ strains. expressed in ter-s of

displacements. is
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(3-4)

( Of: = au' + u' au' + u' ou'
yy y x x z z

[~cos<P + llsincjl](ou" - u" i5c1»x z

[~sin¢\+ ncos¢](ou~ + u~ i5<jl)

-",.. -" .k'
u<-y~ = n U IjJ

area
ell = J~ !f

o

The stresses are simply

o Ee:
yy yy

o + GE:
YI1 yn

Substituting 0-1), 0-4). 0-5) into (3-3) yields

2 2
lI' u'

{E[u' +~ + _z_ - u"(Lcoscfl + nsin¢)y 2 2 x ...,

- u"(-E;simt> + ncoscjl) ] [ou' + u'ou' + u' ou'
z y x x z z

(3-6) - (t;cos~ + nsin<jJ) (ou" - u" 0¢J)x z

- (-E;sin¢> + ncos¢) (ou" + u" l'l¢)]
z x

Rearrangement of (3-6) by p,rouping of tenns havinR the same virtual

displacements leads to
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(3-7)

cU ~ f~ {v (cu' + u' eu + u' eu') + S 0$'
o y y X X Z Z Y

+ [-M cos¢ + M sin<p](~u" - u" oil»z x x z

+ [~t 510$ + M cos¢)(ou" + u" 64» }dy
z X Z x

The stress resultants and moments formed in (3-7), which act on

the deformed wing as illustrated in Fig. 3.2, are defined as follows

(3-8)

v
y fJ (5yy dE: dn

area
,2 ,2

u u
EA {u' + _x_ + _z_ - eA(u

x
" coscfl _ un

W y 2 2 ?
sincfl)}

!J l; d~ dn
area

ana o , by definhion

(3-9)

,area

M - If S a de: dnz yy
area

,2 ,2
u u

E1 (-u" cos + u" sin) + EA eA(u' +~ + _z_)
z x z w y 2 2

where I z !!
area

£;2. de: dn

and !! i; 1"\ dt; dn ~ 0
area

M
x

fJ n (J d~ dn
yy

(3-10) EI (u" s1n4> + u" cosep)
x x z

where I
X

!!
area
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Sy - ff (-~ a + n ax~)dE; dn
area yn

(3-11)

GI $'
d

where I
d - J! (~2 + n 2 )dE,; drt

area

At this point in the development the moments of inertia I • Ix z

are first introduced. Hereafter, it must be recognized that 1z may

assume values much larger than I x The terms containing the quantity

e
A

• which measures the offset of the tensile axis (area centroid) from

the elastic axis, will be dropped. The basis for this simplification

terms ultimately leads to a dimensionless paramet~r.

is that, in the final modal formulation of the equations. the retention
SA eAl

VI
of E1

x
which appears only as a small quantity added or subtracted with unity.

Since it will not significantly influence dynamic stability. hereafter

e = 0 will be assu~ed.
A

After appropriate int~grations by parts within equation (3-7). the

final form for lne first variation of strain energy, including boundary

terms. is

8U = fl ([-(V u')' + (-M cos. + Msio.)"]6u
o yx z x x

- (V )' ou + [-(V u')' + (~f ;;incfJ + M cosljl)"]c5u
y y y z z x z

(3-12)

+ [-(S )' - u"(-M cos¢! + M sinifl) + u"(M sin$ + M cos<!l)]olj>}dy
y z z x x z x

+ V oU I~ + u' V cu Ii + u' V ou l~ + s 8~1~
y yo x y xo z y zo y 0

+ [-M cos~ + M sin.16u'l~ [-M cos. + MsincP]'c5u I~
z x xO z x xo

+ [M sin¢ + M coscP3ou'l
l

-- [M sin$ + M cos$]'cu I~z x 20 Z X zo
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Formulation of the first variation of the kinetic energy is greatly

simplified relative to the Ref. 7 derivation because there are no iner-

tial effects introduced by rotation of the helicopter blade. Since the

procedure is straightforward and well described in Ref. 7, the details

of forming the kinetic energy i\< terms of displacement velocities,

taking the first variation, integrating by parts over time, and expressing

the resulting form of oT in terms of time derivatives of u ,u,x y

u , and ~ are omitted here. After the ordering scheme has beenz

applied, the form of the first variation of kinetic energy, with terms

retained to second order and corresponding to equation (52) of Ref. 7, is

oT =f~ ff p {- [u + ~(-Esin¢ + ncos~)]ouo 5 x· X
area

- [u - ~(~cos¢ + nsin¢)]ouz z
(3-13)

- {u (-~sin¢ + 4COS¢) - U (~cos¢ + nsin¢)]o¢x z

As note~ to Ref. 7, the last term in this expression is by defini-

tion a thirc vrder term, but it is retained in order to include torsional

inertia in the torsion equation.

The final form of the first variation of kinetic en€'.rgy is obtained

by integI'ation over the sectional area, which leads to the followin~

definitiom~:
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m - fJ Ps d~ dn
area

(3-14) lie - fJ Ps ~ d~ dn
area

l J - fJ P (~2 + n2)d~ dn
sarea

with fJ Ps n d~ dn 0
area

The final form is

(3-15)

or::: J/,
fo {(-mu + s ~sin¢)eu + (-mu + s ~cos$)eux e x z e z

+ [s u sin$ + s ~ cos¢ - J~]e$}dye x e z

The virtual work of the applied loads is

(3-16) oW = fi (F eu + F ou + m o¢)dyo x x z z y

Clearly the drag loads will now enter the equations of motion in the

same manner as the 1iftin~ air1oads, in contrast with (2--1), since

F and F will consist of lift and drag force components.x z

Application of Hamilton's principle using (3-12), (3-15), and

(3-15), together with (3-8), (3-9), (3-10), and (3-11), results in the

following quantities being required to vanish:

terms

(3-17a)

,2 ,2
u ux x

[EA (u' +-+-)]' =T ' = 0
w y 2 2
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eu terms---x

{-EI (-u"eos<jl + u"sin4»eos41z x z

(3-l7b) + EI (u"sincP + u"cosq,)sinl/l}" + mux x z x

- s <p sinl/l 0
e

eu terms-z

{EI (-u" eosel> + u" sin¢)sinl/lz x z

(3-17c) + EI (u." sint!> + u" coscjl)c.ostjl}1! + mux x z z

- s ~ cos$ - F 0e z

6q, terms

- (GI ep')' - u"[- EI (- u" coslj> + u" sin<j»cos<jld z z x z

+ EI (u" sinlj> + u" coz<p)sin<p]
X x z

(3-17d)

+ ui! rEI (-u" cos<P + u" sinq,) sin<j> + F.~I (u" sinljl + u" cosq,) cost!>]
x z x z xx z

- S 11 sin<l> - s u cos<p + JtfJ - M ... 0e x e z y

In (3-17a), since it is known that for the nonrotating coni:i.lever

wing the spanwise tension T will be zero everywhere, the expression

can be integrated leaving

(3-18)

,2 ,2u u
\l' +~ ... _z_ = 0

y 2 2
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In replacing sin<jl and coslP by small angle approximations, it

would be consistent with the ordering scheme to approximate the cosine

by unity. Due to the possibility of a large ratio of bending stiffnesses,

\\

due to shortening inducedu z

u enter the problem is by the
y

u and
x

purely geometric dependence on

which can result in Uz being large compared with ux ' it was found

by the lateral deflections.

manner by which axial deflections

(true only with eA = 0). This constraint indicates that the only

;',. necessary to keep the second-order approximation of the cosine at this

Substitution of

sin<jl ::: </J

u • while maintaining symmetry in the inertialx
and

(- EI (- U"(l_</>2) + u"q,) + EI (U"q,2 + U"CP»)"z x z x x

+
..

- s ~q, = Fmux e x

(EI (- u" + u"CP)<jl + EI (u"<jl + u"(l-q,2»))"
z x z x x z

+ mu' - s ~ Fz e z

u
z

into (3-17) leads to

coslfl

(3-20b)

and stiffness matrices of the final matrix equations.

ster. This is done to derive properly certain elastic coupling terms

involving

(3-20a)

(3-19)
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T
I

(J-20c) + u"[EI (-u"4> + U"4>2\ + EI (u"</! + u"(l-cf>2»]x z x z· xx z

- s u 4> - s u + J~e x e z my

"

. 1

Reorganization of terms and introduction of the displacements w

and v for Uz and ux ' respectively, gives

{TEl ct>2 + EI (l-cj>2.) ]w" - (E1 - EI )v"cj>}"z x z x
(3-21a)

{- (EI - EI )w"cj> + [EI (1_<1>2) + ct>2 EI ]v"}"
z x z x

(3-Z1b)

+ m V- s ~4> Fe x

GI cp" - (EI - EI ) [(w,,2 _ '7"Z) '" - v"w" (1-2",2) ]
d 'z X 'I' 'I'

(3··21 c)

+ s vcp + s w - J(fJ + my = 0e e

The underlined terms are reasoned to represent higher-order effects and

are dropped. In the case of the inertial terms coupling chordwise

bending and torsion through the offset s ,this is a third-order
e

effect relative to terms like mv. The final form of the three-DOF

sy!;tem of equations. with some regrouping. is

{EI w" - (EI - EI ) (v"<jl - w"cf>2)}"
X Z X

(3-22a)

+mW-s~ F
e z
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(3-22b) {EI v" - on .- EI) (w"lj> + v"cI>2)}" +mV Fz .'Z x

(3-22c) GI ep" - (El - EI ) [(w,,2 - v,,2)<jl - v"w"]d z x -- =

+ s W J~ +m 0e y

This system is elastically and inertially self adjoint, which

assures that the stiffness and inertia matrices eventually assembled

during modal analysis will be symmetric. The terms containing

(El - EI) represent the nonlinear coupling between the torsion andz x

bending degrees of freedom; all remaining stiffness, inertial, and

applied-load terms represent the same familiar forms encountered in

linear beam theory. Terms in (3-22) which are underlined do not appear

in the Ref. 7 equations and are retained here as a result of the absence

• of a restriction on the bending stiffness ratio EI lEI .z x Strictly

speaking, when this ratio is large compared with unity, the single

underlined terms will increase in relative importance while the double

uiiderlined terms are negligible in magnitude.

The nonlinea~ equations of motion (3-22) are next adapted to

permit analysis of stability about a steady-state deflected position

due to an equ~librium lifting flight condition, which could be level

flight or a steady pullout at a high load factbr. Small time-dependent

perturbations about the equilibrium operating condition are introduced

by expressing the deflections w, v, and ¢ in terms of steady-state

equilibrium def.lections w
o

v ,and
o

Ql
o

and small unsteady perturba-
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(3-23) vet)

First, the steady equilibrium deflections only are substituted

into (3-22) to obtain a nonlinear syst~m of equations for the equilib-

rium solution. The resulting nonlinear steady sys~em is

(3-24a) {EI w" - (EI - EI )(v"<!l - w"lj)2)}" F
x 0 z x 0 0 0 0 z

0

(3-24b) {EI v" - (EI - EI )(w"ljl + v"1jl2)}" F
Z 0 Z x 0 0 o 0 x

0

(3-24c) GI ¢II - (El - EI ) [(W"2 - v llZ)¢ _ v" w"] +m 0d 0 z x 0 o 0 o 0 Yo

and

L
v

o
Next a linearized system of equations in the time dependent small

L
"W

o
, and the assumed steady drag, which entered equations (2-1) in an

Appropriate steady lifting aerodynamic loads are inserted for

MQ>
o

entirely different manner, is introduced through

perturbation deflections is obtailrled by substituting (3-23) into (3-22),

subtracting the nonlinear equilibrium equations, and discarding products

of the perturbation quantities. The linearized unsteady equations of

motion are

(3-25a) {EI w" - (El - EI ) [¢ v" + $ VII - ¢zw ll - 2<1> w"<I> nil
x 1 z x 0 1 1 0 0 1 001

+ roW - s ~ - F ; 0
1 e 1 zl
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(3-25b) {El v" - (El - El )[$ w" + w"$ + $2 V + 2$ v"<jl ]}"z 1 z x 0 I 0 0 I 001

o

( 3-25c) GI <jl" - (El - EI ){[Zw"w" .- Zv"v"](j> + [w"Z - v"Z]<jl
d 1 Z x 0 1 010 001

- w"v" - v"w"} + s W - J~ + m a
o 1 ole 1 1 Yl

Analysis of stability with this system can be done with the standard

techniques for linear systems, but first the coefficients must ~e found

for a given equilibrium flight condition by solving (3-Z4). The loads

appearing in this equation, including the chordwise forces, must be

expressed as linear functions of perturbation displacements wI and

$1. No dependence of aerodynamic loads on the fore-and-aft motion

vI will be considered in this analysis.

C. Comparison of the VT and VCT Models

The VCT model (3-24) and (3-Z5), although different in appearance

from the VT model (2-1), in fact reduces to the same form when

T + ~ and the steady lift is zero. To illustrate this, first ima~ine

that the steady loads applied to (3-24) are

(3-26)

F a
z
o

o



where D is the same assumed drag force, constant in magnitude and

directiofi along the span, as is considered 1n (2-2). The solution to

(3-24) immediately gives

bending equation as

w = ~ = 0 , leaving just the chordwise
o 0

(3-27) EI v""z 0
D

Substitution of TEl for EI in (3-25) together withx z

w ¢ = 0 gives
o 0

(3-28a) EI w"" - (T-1)EI (cj> v")" + mW - s iP - F 0x 1 x 1 ole 1 zl

(3-28b) LEI v"" + mv - F 0x 1 1 xl

(3-28c) GI ¢" - (L-.1)EI [_v,,2cj> - v"w"] + sew1 - JiP +m 0d 1 x 0 1 o 1 1 Yl

The equation for vI uncouples and can be disregarded. Integration

of (3-27) twice, using the zero shear and moment boundary conditions

at the free end, gives

TEl v" = D !.,(R._v)2x 0 -.

(3-29)
= - M

z

where (2-2) has been used. Substitution of (3-29) into equations

(3-28a, c) yields

(3-30a) EI !M"" + T-l (!'I '" ) '0 + .. - se~l - F .. 0x 1 T z"'1 DlWl III z
1
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For the more general case of a steady lifting condition charac-

into a form similar to (2-1), in which the vI displacements become

causes (3-30) to reduce exactly to (2-1).

v
o

togetherEIz

First, the nonlinear steady

replacinRTEl
x

~ f 0 , (3-24) and (3-25) can still be cast
o

andW f 0
o

GI </I" - "[-1 M (w" + v"~ ) + s w - J(fl + m + 0
d 1 T z 1 ole 1 1 Yl

(3-30b)

terized by

equations (3-24) are rewritten with

dependent upon WI and ~l since "[ ~ ~

Finally, requiring that "[ ~ 00 , with the consequent vanishing of

with some rearrangement of terms to give

(3-3la) EI w"" - TEl T-l [v" - w"¢ )<fi ]" F
x 0 x T o 0 0 0 z

0

(3-3lb) TEl [v" - !=.!. (w"q, + v"cjl2)]" F
x 0 T o 0 0 0 x

0

(3-31c) GI $" - T-l TEl [(w"¢ - v")w" - v,,2q> 1 +m 0
d 0 T x 0 0 o 0 o " v

'0

Again, as T ~ ~ the elastic bending curvature about the n principal

axis (Fig. 3.1) of the ~irfoil section should go to zero. But now, the

sp.ction is displaced to a posltion fixed by the deflections w
o

and 4>0 of its elastic axis, and th<:! true elastic curvature about the

~ axis is now recognized as v" - w"¢ .
o 0 0

In equation C3-3lb), which is the fore-aoa-aft equilibrium equation,

as T becomes large and v becomes small, the texm v"¢2
000

is of

higher order and can be neglect\~d relative to

T-l
and le~ting ~ ~ 1 leaves

v ..
o

Remo~ing this tenm
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(3-32) TEl [v" - w"41 1"x 0 0 0
F

x
o

Integrating this equation twice. l.sin~ the shellr llnd moIlK!nt boundar.".

conditions on v and w at the free end. leads to
o 0

0-)3) ,EI [v" - w"'" 1x 0 0"'0'
~

z
o

Here it is assumed f0T c0nvenience that F is ~onstant alon~ the
x

::'

span; of course the integrations could 3S well be ~~rformed for an;

of (3-29).M
z

is similar toknown spanwise variation of F !'{x z
o 0

except that it represents the bending-tor~ion couplin~ effect upon the

moment-curv~ture relation. As T -• .Xl the quantin' (vlt
- w"¢') m\L'>t. coo

go to zero according to (3-33). In the limit the v deflection becomes
o

dependent upon w
o

and as a r,~sult of bendin~-torsi(>n couplin".

The two re1ll<lining indep'e;~dent equations in (3- 31) are al r("ad""

arranged so that the coupled curvature quantity in (3-33) can be

recognized. Sutstitution fc~ this quantity 1('ads to

Elw''''
,-1

[Ii ¢ ]" F+ -- ...
0 T z 0 z

0 ('>

(3-34)
,-I ?

Gld$~ - [tol w" - v"-.t>
0

1 +m = 0
l Z 0 (J- V

0 '0

As , ... a> • with v"¢
o 0

recognized as a hi~her-order term. the nonlinear

steady equilibrium equations finall"" become

(3-35a) £lw"" + [H ~)" - F "" 0
o Z 0 Zo 0
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(3-35b) GI ~" - M w" + m .. 0
d 0 Zo 0 YO

These resemble (2-1) with dynamic terms removed.

A final exercise is to demonstrate that the linearized unsteady

perturbation equaticns (3-25) also reduce in a systematic fashion to 3

VT system when T + m When (3-25) are rearranged with

replacing

replaced by

(3-36a)

(3-36b)

(3-36c)

EI . and the combination of steady deflections in (3-33)z

M • thp. linearized system becomeszo

EI w"" + [M tP]" - TET 1"-1 [v" - <!l w" - w"¢ )¢ ]"
x 1 z 1 ~-x T 1 0 1 0 1 0

o

+ mW~ - s q, - F = 0
J. e 1 zl

+ mv - F C
1 Xl

GI 4>" + TEl 1"-1 [(v" - ¢' w" - T,1"cfl )w" + 2v"QJ v " + v ..
2

1jl 1
dl XT 111010 001 01

- M w" + sewl - Jif>l + m 0
Zo 1 Y1

The underlined terms are of higher order for T > 1 and a~e discarded.

When T is sufficiently large that ,-1 :;: 1
1"

equation C3-36b) becomes

(3-37) TEl (v" - rj> w" - w"rj> ]"x 1 0 1 u 1
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The quantity S, defi~ed as

(3-38) v" - cP wIt - w"ljl
1 0 1 0 1 '

i~ recognized as the time-dependent curvature, in the linearized

perturbation deflections, about the n axis of the steady-state deformed

cro:'lS section. Thus it "in expectpd that uS T + co the curvature S

must approach zero.

The dynamic linear moment is defined as

(3-39) TEl e
x

Equations (3-37) and ()-36a, c) can '~e restated, after use of (3-38)

and (3- 39) together wi th T .... 00 , as

,,.
(3-408)

(3-40b)

0-40c) o

o

Since 6 .... 0 • the acceleration term in the second equation could be

~xpressed entirely tn terms of wand ljl accelerations by workin~

from integration of

(3-41)

In this linearized unsteady system, Mz i(y,t) represents the moment at
1

station y due to the instantan~ous chordwise inertial loads and applied
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linearized unsteady drag forces actin~ cutboard of the station. Because

Thus, evenW'
zl

can be eliminated, (3-40) still involves three unknownsthough v
l

of the dependence of M upon wI and ~1 ' equation ()-4Gb) cannot
zl

be uncoupled to allow for a separate calculation of

WI ' ~l ' and M
zl

The purpose of this section has been to demonstrate analytically

the connection between VCT representation of the cantilever win~, given

by (3-24) and (3-25), and the VT system given in (2-1) and used in

Ref. 1. It can be concluded that the VCT model remains valid for

arbitrarily large bending stiffness ratio T, and that the drag

coupling effect has been satisfactorally accounted for by the nonlinear

elastic bending-torsion coupling terms. Since the forms obtained in

(3-35) and (3-40) are but special cases of (3-24) and (3-25), actual

solutions will be found, using the latter system only, for practical

values of T.



FIGURE 3-1 Coordinate System and Displacements

z

x

y

FIGURE 3-2 Stress Resultants and Moments
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Chapter IV

FLUTTER VELOCiTY CONSIDERING VERTICAL
BENDING/CHORDWISE BENDING/TORSION (VeT)

A. Modal Equations for Small Oscillatory Motions About a Steady-State
Deformation

The model for tor5ion, transverse bending, and chordwise bending

of the uniform c~~~tlever wing developed in the previous chapter is

used to determine flut~er velocity with of the same set of assumed

modes used in (2-1). Use of n !lssu:iled modes 1n tQ!."sicln. !1 111 tl"ans-

verse bending, and n in chordwise bending results 1n a ~et of In

modal equations in terms of modal generalized displacements. Since the

assumed modes satisfy the natural as we-ll as ~eometrical boundary

conditions, which were obtained during the application of Hamilton's

principle, Galerkin's method can be employed to transform the equations

into algebraic relations in the generalized dislliacements. The nonlinear

steady-state equilibrium equations (3-24) hecome nonlinear al~ebraic

equations in the steady-state generalIzed displacements, which are

solved iteratively. These displacements determine the coefficients of

the linearized unsteady model by applying Galerkin's method to (3-25).

Then the velocity is determined for which simple hanoonic motion of

this system is possible (neutra) dynamic stability).

The steady aerodynamic loads for the equilibrium equations (3-24)

are specified in terms of incompressible strip theory. A typical air-

foil section (Fig. 4-1) has its zero-lift line inclined to the free-

stream velocity V by the angle a + 41 (y) •
o

The resultant steady

v ) and the moment(acting in a direction perpendicular toLa
o

are given by

lift

11\
o
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(4-1)

A drag force D is also present. These forces must be resolved into

the axis system x. y.? fixed with respect to the win~ root. The

requirE!d transformation is

( F L cosa + Dsina
:z: a

0 0

(4-2) 1F Deosa L sinax a
0 0

Assuming sina:: a and cosa::: 1 ~nd neglecting the Z cOloponent of

dTa~ shows that the st.eady aerodynamic forces to be used with (3-23) are

( F 2llpV2b(a + «ll )z 0
0

(4-3) F ZllpV 2b(C - a 2
- U$~,)x

\)

m 2TIpv 2b 2A(a + $ )
v .,
• 0

The dra~ force represented by C is constant spanwise. and the

definitions in (2-22) have been adapted.

The steady-state deflections are now expressed in terms of the

assumed modes (cf. Appendix A for definitions)
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a
w = E f 0

0
1"'1 wi ~i

n
(4-4) v = E f qO

0 i=l vi vi

n
<jl = L f<jl .q~0

1=1 i i

Bending mode shape functiong I: and f are identicaL Subst1-
wi vi

tuting (4- l,) Into (3-24) and (4-3) and appl:>'ing Gale~kln's procedure

leads to

(4-5a)

(4-5b)

(4-5c)

o n n n
- (El -E1 ) {r ( r fn ct;; )( r f" ct;;)( r f ~ q¢ H$ dy

z x 0 1=1 wi i ,,-1 w" " }J=l lJ lJ j

n n n
- Jt( L f" qO )( 1: f" qO)( L f ((0 )fA. dy

o i-I vi vi \>=1 v" v" '\.1-1 ~~ 'lJ "'j

n n
- l'( r f" qO )( L E" ~)f dy

o 1=1 Vi Vi ""1 w" " <P j

2. n

f$j dy + fo (i:/~lq;t)f4l/Y)
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The indicated differentiations in the first two equations are carried

out, and appropriate integrations by parts of the resulting modal

integrals is performed. The first terms of each equation are then

expressed in terms of modal natural frequencies as in (2-10) and (2-11)

which leads to the form

(4-6a)

EI n n
l1l.ll

2 Q.ct; x (T-1) L E n qO qO
W, •

- -rr
lJ=1 \1=1 vj )J 4>\1 v

J J lJ

EI n n nx (T-1) E r E Rij\llJ qO qO ~+p
lJ=1 v=1 i=l 4>v cflu i

n t28.'- 2IIpV2 bR. L 1.1\1
qO 2IIpV

z
b ~ - V-J

\1=1 4>,-,

EI n n
Tm w2

~ qO x (T-1) L r H qO qO
w. vj

-~r

\1=1 lJ=1
\luj <1>\1 wlJJ

EI n n n
(4-6b) x (T-l) r L 1: R

ijlJV
qO qO qO- liT

~ v=1 lI'''l i"'1 ¢Iv ~IJ vi

t 28.
(C - .') I ]of- 2npv2b~ r 1jv q" ZITpV

2
b ~ - rl

\1=1 ¢v j

(1 ..:: j < n)

(4-6c)

t EI n n n
J w; ? q: + if (T-l) r r E R"\lji ~\I q:

~j - ~j \1=1 u=l 1=1 ~ IJ

EI n n n
- t f (T-l) [ r r R ji qO qO qO

\1=1 u=1 1=1 UV. vlJ Vv <l>i

are proper.ties of the assumed bending modes described in

Appendix A, and I ij represent the m~dal integrals previously encountered

and defined in (2-13). The nonlinear bending-torsion coupling terms

give rise to two new forms of =adal integrals,
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(4-7)

(4-8)

Equations (4-6j can be arranged in the final format used for computa-

tions by dividing the torsion equation by TIpv2 ib 2 and the two bendin~

equations by npv2tb. using modal natural frequency relations in (2-1~)

and (2-15), and nondimensionalizin~with thp. parameters given in (2-16)

and (2-26),

(4-9a)

(4-9b)

.. ".J
TIN,

J

n ~
EH o-l!.

V\.ljq" b
U=l v

n
- r

u=l

~ et;
R ~~ Q

U'Jji b b Q4l.
~

o 0]n qv \..
r H ~-l!

v=l jw b b

n n
L L

U=l 1=1
qO qO

n n n v v
U v 0r L r Rib b q$

v=l ~=1 1=1 UVj i

~tpiC1 r n
+ (T-l) UZ- i 1:

Lv=l
(4-9c)
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A solution to (4-9) can be found for a given wing configuration

once drag C, root angle of attack a. and dimensionless speed U

have been specified. The solution procedure involves Newton's method

and is described in Appendix C.

When siln.ple harmonic motion is assumed. the line£rtzed perturbation

ei!uations of motion (3-25) are converted into linear a.l~ebraic equations

via the same steps described in Chapter II in derivin$! modal equations

(2-18) from (2-1). The perturbation displacements are expanded in

terms of n assumed modes and generalized displacements,

n
iwt

w1(y·t) - r f (v)«J.., e
i-I wi' i

n
ililt

(4-10) v (v r;) ~ 'I"' f (v)qL. e1 .' .
i-I wi' vi

n
iwto (v t) • r f¢ (y)q¢ e1 .•

i-I i i

where 'Iv1 and

dimensionless.

q nave di.ensio~~ of len~th. whereas q arc
v ¢

i I
Ant~clpatin~ solution for flutter bounrl~ri~~ ~qin~ th~

V-g method, structural dampinr. g is included by introducin,. ~ ~~lex

elastic ~dulus. and the shaplc harDOniot ."I1t"1oads art.> assUfted tc have

been expressed l~ te~ of unit ~eneralized forces ~~ In (2-9). Vith

the addition of the forc-and-aft bendtn~ de~ree of freedoa. the

gener~tl%cd forces n~' appear as

(4-Ua)
.{

f (';l.vl;tH d\',
'0 %1 v I

(1 ~ j ~ n)
'lv

i
n n lwe

• 1l~lb) 1I y n, --+ r 0 q ... le
1-1 'I. I b

I-I
!.1+2n "I
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(4-11b)

(l .:: J .:: n)

(4-11C>

n ~I o.
• '.. "".':b· .... (r.. ") 'I'" "' 1 l ...:t:1..... ('.\+"'I_ n , i -1> + •. '.:\"'1 i'" q.. l"

i-I i-I +_n, +_n .. i

h3vin~ n +1 , I ' 1nI~

"~, I

reflec~s the ~9sumrtion that ther~ Is n~ d~p~ndenc~ o! un9t~adv alr-

The omission of c~luans in th~ ~rr~~

loads upon fore-and-aft DOtlons VI •

After Calerkln's ..thod h~s b"'t.'n I:q>h-a..·ntt-d f~r t"qUiit i.m:; ()-.:!'.)

br the S~ manipulations r~uired to d~velo~ (2-17), the svst~~ ~f

3n lIOdal l.!quations whic."h d..'tt'rmln.., lint';u stabl lit'" _l~ut th.- ~h'~'"

equlllbrluD deflections appear In the foro

(4-12a)

i
I

I
I

I
!
I
~

~
Z ~_J..• b

n !\ n q",

.... il (:-1 ))oWl 7. 'I'" R C::" • } I
+ .. '~j i - q~ ba I HI\' "u-I \"1 " .i-I ' .. \'..

n n 11,.

+ :: ~ (r-OMPi 7. 'I'" H q. \._~

I'" ,l u-l
,I I \ ¢ b

t~

• •
r, n q". re n ~

... "" {(~-l)MPI(\ 7.1
,.

H \J - 2 '" '1"' R q. --'::: 1.. ..
i~ , T .. .

"',,":1 ~ b
i-I u-, u~! \,-1 u



(

I

(~-l2b)!
I

n 1\ n qv

+ r {(!-l)MPi Z r r R q. • }-:-!
I-I ~ U-I v-l Ij\.&'v ·u qo b

"
n n ~ n n

qO

+ 'r {(~-i)MPiCl Z( !:' Htl~j b
U

+ 2 r 1: l\,jUI qO v"
i-I u-l u-l val . dllJ

-b1

l
(1 ..::. j ..::. n)

:\ ~

+ : {(T-i)KPl ~{r. "ulj
i-I a ~.l

q. 0 0

n n v n n ~

(

~ {(~-I)MPi~ ZI 'r HUll b
U

- 2 r t R~ivj q; bU1
I-I u-I u-l v-I V

I ~i
II - S H til + Qj+2n.1} ~

I
i

(~-Ud "\

I
I
!

l
Here HjUV and RijlJV are the .ldal inte~rals defined in (4-7)

and (4-8). which appear in this system multiplied by steady-state

generated dtsplace.cnts. The cafficient~ of terms which couple the

steady deflections intQ this system must first be constructed by the

indica~~d suaaations b~f~re the ei~envalue9 can be determined.

60



The unit generalized forces required in (4-12) will now be expressed

in terms of the two-dimensional incompressible unsteady aerodynamics

adopted for (2-2) and (2-3). It will be necessary, as it was for the

steady aerodynamics, to transfer the air loads from wind oriented axes

to tho coordinate sY$~em fixed at the wing root. For the present case,

the circulatory part of the unsteady lift will be ass11med perpendicular

to the direction of the freestream velocity, wher~as the noncircu1atory

portion will be assumed to act normal to the chord of the airfoil sec-

tion in its steady-state deflected position. The inclusion of unsteady

leading-edge suction effects will be considered in the next chapter.

To separate the circulatory and noncircu1atory contributions to

the lift, La in (2-2) and (2-3) can be rewritten in the fo~ (cf. Eq.

(4-126) of Ref. 5)

(4-13)

2 · WI 2~1 2· .
+ IIPb'w2 C(k) [- ~ - + ---;-:r + -.-l:. (~-a)-;P1]e1.LUt

k b k k

Here the first term on the right represents noncirculatory lift L
~C

xz

Referring toLaC
Fig. 4-2, these terms can be expressed as resultant forces in the

and the second term the circulatory portion

frame by

F L coset + L cos4>
zl a

C ~C
0

(4-14)

F - L sinet + L sin¢
Xl ac aWe 0
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Hak.in~ the assumpt ions COSCl;:: 1 and cos$ :: I
o

yields tha identity

(4-15)

When ie is assumed that sinCl:: Cl and s1n$ ~ ~ • the chordwise
o 0

force components become

(4-16)

Ibis simplification has the result

The remaini~g circulctory contribution to

Preparatory to steps that lie ahead. it can be seen that when the

unit generalized for~~s are determined from (4-11) with the modal series

for ~o. wI • and $1 inserted. modal integrals of the forms

will be encountel.'ed.lls a conseq'lence of the noncirculatory contribution

1:0 (4-16). Since thesE! integrals do not occur elsewhere and the effect

they introduce is expected to be minor, the noncircu1atory contribution

to r is neglected altogether.
xl

that the unsteady noncirculatory force illustrated in Fig. 4-2 acts in

the z direction. at all spanwise stations.

F can be expressed,
xl

using the notation in (2-3) and after some manipulation, as
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(4-17)

...,

F~ = rrPb]W2~{(1-Lw) Wb1 + [L~ - ~ + ~ + A(l-Lw)l~l e
iwt

1

With the 8Hodynamic loads given in (4-17), (4-15), and (2-2),

where m
y1

(¢1l'w1;t) = ma(wl'~l;t) , the unit generalized forces can

be ~ :veloped< starting from (4-11), by means of the same steps followed

in assembling (2-22). The final result is

(i"'j)

(ifj)

(4-13)

(l2.j~o)

(12.i 2.0 )

()
''V,1+O

o for 1 < V < 30
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B. Solution Procedure for Flutter Velocity of a Lifting Wing

The 3n medal equations (4-12), with (4-18) inserted, can be

expressed in matrix form

(4-19) ([M ] + [Q]){q} - Z[k ]{q}
s 5

o

The mass and stiffness matrices Ms and Ks are real and symmetric

and are writt00 out in Fi~. 4-3. The terms in K include sums of
s

pcoducts of modal integrals and the steady equilibrium generalized

displacements found as solutions of (4-9). The aerodynamic matrix

Q , whose elements appear in (4-18), is complex and nonsymmetric.

Equation (4-19), therefore, represents a complex eigenvalue problem

for the complex frequency parameter Z Its solution yields damping.

speed, and frequency as in the case of (2-25) and (2-27).

The logic used to compute neutral stability conditions from

(4-19) is diagrammed in Fig. 4-4. The primary difficulty encountered

when steady deflections are introduced is that a preli.minary estimate

of speed U
e

must be made before the eigenvalue problem can be solved.

Steady deflections for U
e

are used to generate coefficients in

and unsteady aerodynamic loads are then computed for large enough

reduced frequency that the eigenvalue corresponding to the aeroelastic

mode which flutters has negative (stable) damping g. Successively

smaller values of k are then substituted and aerodynamic terms

recomputed. The eigenvalues are recalculated until positive damping

occurs for the flutter mode. From this point a zero-locating sub-

routine determines the reduced frequency for which damping g is zero,

whereupon one can calculate flutter speed U
F

. The entire procedure
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is repeated with a new estimate U
e

until the speeds U
e

and

are adequately matched. The flutter speed determined for zero lift

serves as a ~ood first estimate for Ue
With care, close a~reement

of the two speeds can be achieved in three or four iterations.

Three assumed modes in each degree of freedom, corresponding to

a system order of 9, are found to give adequate conver~ence for all

cases. The model integrals were computed to allow n < 4 • a task

which required nUlneri..:al integration of 100 quantities of type Rij\.lV

and 40 of type Hi\.lV

C. The Nonlinear Elastic Cou£!~E~~_Le~~

The need to retain ~ll terms in (3-22), including thi.rd de~ree

nonlinear, in order to model adequately the nonlinear elastic bending­

torsion coupling mechanism is now demonstrated by means of typical

applications. Of course, neglecting higher-order nonlinear effects

would have the appeal of reducing comple>:.:i.ty. For example, removal

of all third-degree nonlinear terms would result in the elimination

of all terms containing quadruple modal integrals R
ijUIJ

from both

the nonlinear steady equilibrium system and the linearized dynamic

stability analysis. In order to examine the effects of such approxi-

mations, numerical experiments were conducted wherein higher degree

terms in both the steady and unsteady modal equations were neglected.

First, static deflections are consideTed. Cl~arly, if the

equations do not adequately represent the steaay-state deflections

of the wing over a realistic range of lifting conditions, then any

linearized unsteady perturbation analysis based on the same level of
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approximation cannot be er.pected to succeed. The nonlinear steady

equations (3-23) O;;;ii,I be solved at three It!!vels of approximation:

(1) Linear terms only retained.

(2) Second degree monlinear terms includ~d.

(3) All nonlinear terms included.

The linear set of modal equations is just (4-9) with the nonlinear

terms removed:

(4-20)

MPia ~j n _ 4Bj
n4N~ 2 E Ij\l q$J t.r b -

v=: 1 ITN
j\l

°MPi qv n 4B.
n4N~

ex • _ .--.1
(C - a 2

)T ---w- --t- + 2a L Ij\l
qO

] v=l lPv ITN
j

The torsion equations are now seen to be n uncoupled and immediately-

solveable relations fo~ the n generalized displacements q$.' Tne
J

results permit solution for the bending displacements, thus eliminating

the need for matrix o~erations. Since all elastic coupling terms are

absent, deflections Wo and lPo are independent of the stiffness

ratio T and the steady drag parameter C A very important conse-

quence is that the mechanism by which drag influences divergence is

missing. One concludes that (4-20) is a particularly poor representation

for steady deflections in the presence of steady drag.

Retention of the second-degree nonlinl~ar effects frc'm (4-9) involves

adding to (4-20) all terms containing the tLiple modal integrals

HiV~' The system becomes fully coupled, and solutions are found by
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the s~e iterative scheme described in Appendix C for solvin~ tlte full

nonlinear system.

The behavior of the second degree nonlinear solution is compared

\o'ith the li.near deflection from (4-20) in Figs. 4-5 and 4-6. Here

it is shown how the deflection in the first vertical bendin~ mode and

the first torsion mode vary with increasing speed for a fixed angle of

attack a '" 0.01 radians of the wing root. The para1&eters M, P ,

i
a

" A , and T for these examples correspond to the idealization of

a sa.ilp1ane wing discussed in Chapter VI. and sufficient modal con-

verg.,\nce 1s assured by losing n=3. Numbers on the ordinate of Fi~. 4-5

show the actual twist In radians of the win~tip due to the first torsion

mode; the vertical deflection 1n semichords of the wingtip due to

is just twice the value read from the ordinate of Fig. 4-6.

The important influence of drag on the steady deflectie~s is

evident. But there is poor correspondence between the second degree

nonline'lr deflections and l',he divergence speeds indicated in Fig. 4-5.

which al'e solutions of the linear stade stability determinant (2-28).

This discrepancy is most pronounced when C=O. and the rapid divergence

of the second-degree nonlinear deflections for all values of drag

suggests trouble with the second-degree approximation.

Figures 4-7 through 4-10 show solutions of the complete non-

linear system (4-9) for the same wing cOilfigurztion, together with the

linear results. Correlation with the divergence predictions appears

to be excellent, and the sudden blowing up of deflections characteristic

of the second-degree nonlinear solutions is not encountered. Since the

iterative procedure used to solve for nonlinear deflections commences

67



with the linear solution as an initial estimate, nonlinear solutions

which do exist for C=O above the classical diver~ence speed cannot

be obtained.

The full nonlinear solutions conform with nonlinear behavior

expected by intuition. For zero drag. the vertical bending and torsion

deflections should fall below the linear solution owing to the effec-

tive increase in stiffness "seen" by each degree of freedom due to

de[(lrmati.on in the other. This effect is observed. The slight rear-

ward chordwise displacement (Fig. 4-9) for c=o when w
o

and A­
'+'0

are large comes from bending-torsion coupling. and the negative contci-

bution of the second torsion ~ode (Fig. 4-10) reflects a redistribution

of elastic twist toward the wingtip where the curvature due to w
o

is

less. Drag alters the deformed state radically and causes large

displacements at much lower speeds.

A clue to the reason why the second-degre~ terms alone are inade-

quare is found by looking at the sensitivity of solutions to changes

in the bending stiffness ratio T The second degree nonlinear

solution for bending deflections, given in Fig. 4-11. reveals increas-

ingly poor behavior as L is increased. Conversely, the complete non-

linear solution behaves as intuition WOllld anticipate, becoming

insensitive to changing T as this parameter grows toward ro (Fig. 4-12).

In Chapter III the behavior !')r 1' ..... ro of the steady nonlinear

equilibrium equations was analytically investigated. In the discussion

following equation (3-33) it was pointed out that the quantity

v" - q, w" represents the actual curvature about the principal axis
000

of chord"lis!:; bending for the. deflected airfoil section, and that thi.s
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quantity should vanish as T + m. In this limit any chordwise

deflection 1s a geometric consequence of elastic couplin~ betw~en ~o

and Wo ; terms which contain the product T(V" - 4> \1")
o 0 0

approach a

finite value. Now. referring to equations (3-24). it can be seen that

in the second degree approximation this product is retained in the

second equation but not in the vertical bending equation (where

is dropped but v"eJl retained) .o 0
Likewise in the torsion equation.

is dropped but v"w"
o 0

is kept. The result is that terms

containing TV"
o

remain &ld blow up in the limit T+OO. Accordingly.

the conclusicln is reached that. for structures representative of air-

craft wings for which T is reasonably large. the third-de~ree terms

containing the product w"lj> must be rl:!tained.
o 0

It may be added that.

a1 though this elastic coupling effect was neglected in the helicopter

blade equations developed in Ref. 7. in that case the orderin~ schelne

required T to be on the order of unity. Another point is that the

remaining third-degree terms in (3-24). which contain the product

v"<I> • actually can be neglected when T is large.o 0

Since it has been determined that third degree terms cannot be

excluded from the steady nvnlinear equilibrium analysis. it follows

that they must also be kept in the linearized unsteady p~"turbation

equations (3-25). 1be original dynamic stability equations used early

in this investigation, on the other hand, consisted of a linearized

unsteady perturbation system based on the second-degree nonlinear

approxime.tio·,'l. That is, they are the result of removing all terms

containing the modal integrals Rij~V from (4-12). Irregular beh~vior

of the flutter speed with increasing angle of attack a was discovered,
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,as was an €xtreme sensitivity to large T "hich could not be justified

physh:ally.Furthermore. lim~ar steady-state deflections were used--

a particularly unsuitable approximation for inclusi.on of steady drag.

Examples of these original flutter calculations appear in Figs.

4-13 and 4-14. The former gives a comJidr.'i6~n t:'f the early result!:'

with the full analysis by (4-12) for the sa-il?h:.:nt!example. showin~

how the simpler approximation differs siJttlificlll'ltl)" in flutter speed

even in the presence of moderate steady deflections. Figure 4-14.

based on a different wing configuration. gives an idea of the difficulty

encountered for large T when using the simpler analysis. (Note that

the steady deflecti..ons are quite small in view of th,~ fact that this

example is a large-aspect-ratio wing). All of these stability h~undaries

abruptly terminate. at which point the eigenvalue solutions began to

behave erratically. In contrast. flutter solutions of (4-19) can be

obtained for ar.bitrarily large steady deformations-- indeed for tip

deflections well beyond practical 1im.its of material linenrity.

D. Comparison of VT and VCT Calculatious

The flutter velocities found using the VCT model can be ~hecked

directly against velocity computed from the VT model developed in

Chapter II. Although such a comparison restricts the former method t~

the special nOfilifting case w = ~ = 0 • its basic approach of
o C'

linearized perturbation motions about a steady-state deflection solution

can nevertheless be tested by inclusion of steady drag. This is

because the drag effect enters the stability determinant through

coefficients depending on v
o

The chordwise bending equation of
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motion is uncoupl~d when v • v • 0 • and flutter DOdes involve(, ~

just vercical bendi~g and torsion.

The vcr stabili~y equations were analytically reeuced to the \~

form (2-1> in th.~ last chapter by specHyln~ n. 0 and T - "" This

agreement is reflected in numerical results. as evidenced by Fi~. 4-15.

For ID1 exceptiomilly large aaagnitude of drag. C .. 0.04 • chosen to

magnify the iQPortance of drag coupling and hence the steady deflections

in the stability analysis. t~e tvo methods are used to compute flutter

sp/leds for the same nonlifting confij;turation. The vcr analyses were

I1I2de for T ranging from 1 to 10.000.

As is always true for EI z = EI
x

• the drag coupling effect

vani9hes at T ~ 1 ~ith flutter speed unaffected by drag. At the

other extreme. for T = 10,000 the computed flutter speeds for

C = 0.04 differ .by a mere 0.052%. The Ref. 1 flutter speeds calculated

for this same configuration are also shown and agree quite well.

When one examines the VCT dependence of flutter speed on T

(Fig. 4-15), the effect of drag is apparently insenSitive to T over

the range of this parameter representative of practical aircraft

applications. Hence the VT system (2-1) does not suffer by its

inherent assumption that T 4 ~

Table 4.1 presents a further comparison of results from the two

approaches for a different configu~ation, in which modal convergence

i.5 emphasized. Of course, since "C = 50 exact agreement cannot be

expected.

Convergence of flutter speeds and frequencies and also mode shapes

for the VeT solutions is documented in Table 4.2 for zero steady
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11ft and In Table 4.3 (or 4 Ilf~ln, condition specified b~ 3· .01

rad. trl the latter case. tlt..~ appar.mt slowr c:oaYenenc~ Is re!al'.Ed

to the steady lifting deflections (also tabulated). which .ls~ Ya~r

vlth 'll •
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4.258336

.
) r :'.260379

i
.& I •. 260882

~ 4.260889

r' n ur. VT 11-. v~
..,,---+----~-----+-----..;;.-.. _,

2 4..260323 4.2S84S7 !

4. 2Sg~'SI

TnoLE 4.1 Conpari$OD or ~1 Flutt~r S~~ Conput~d with th~

\-yo alnd YCT SVS1:dIlJ.. (H - 40•• P • 0.40. i. - C},t5.. Q
A .. 0.1. S • 0.1. T ~ SO. C • 0.04)

I n • 1 n • 2 n • J n • t.

Ur • 4.15027 UF • 4.183899 UF • 4.18388'\ U
F

·4.183916

n
F

.. 0.85254 S1y • 0.088768 nF .. 0.88757 nr • 0.88758

AMPL. I PHASE AMPL. I PHASE AMPL.I PHASf.: AMPL. I PHASE

~l
2. 1800 I224. 54 0 2.0650 1223.870 2.0659 f223.87O 2.0659 1223.87°

~2
- I 0.6345 1-46.850 0.6309 1-46.840 0.6308 1-46.850

I
I I- I- 4.26

0
qw - - I 0.0107 4.46° 0.0107

3

qw - I - I - I 0.0022 I 1.89°
4

qc/l 1.0
I

0° 1.0 I 0° 1.0 I Oe 1..0 I Dc

1

O.030i'S!199.70 e
q<P -

I
0.03067119:,.53' 0.030751199.700

2

q<P -
I

- I 0.003401- 5.55 e 0.003391- 5.67 0

3

qlj)4
- I - I - I 0.0059 1220.49°

I I I I

TABLE 4.2 Modal Convergence for Flutter at Zero Steady Lift. (M = 9.4,
P = 0.01, i = 0.25, A = 0.1, S = 0.1, T = 25., C = 0)a.
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n - 2

UF - 3.5495

n.- - O. 68Z00

n =- 3

UF = 3.5329

~ =- 0.67468

n =- 4

UF = 3.5315

rlF '" 0.67276

~l
•llv

2
q,';

3

~4

1.19CSS

n.01336

1.18142

0.01333

0.000817

1.18074

0.01333

0.000818

0.000151

0.002305

0.0087656

0.0000983

0.0000090

0.0000013

-0.000033

-0.000284

-0.000005

0.0087591

0.0000915

0.0000017

0.002296

-0.000033

-0.000234

0.0000373

0.0087100

0.002270

-0.000279

Ar-lPL. I PHASEo

2.4492 1227.45

0.524871-26.65

I
I

0.845951- 4.77

0.03071 1':'79.03

I
I

1.0 I 0

0.071781-21.65

I
I
I

~1

\.2

\.3
qw

4

qv
1

qv
2

qv
3

qv
4

~l

Qcl>2

qrj>3

qQl4

q~
1

q"
Vz

q"
v

3

q~
4..

q~
1

qO
¢l2

c:+3

et;
t----:4--+-----....----_-+- -r-__._+- ---. l

Am'L. ; PHAS._E_"__+-_AMP__L_._+-lp_HA_S_E_O._

2.4765 \227.68 2.4860 1227.76

0.50948 1-26.27 0.510681-26.23

0.01637 1- 6.54 0.01612 I- 6.57

- I 0.002501- 1.47

0.85914 1- 4.89 0.86569 I - 4.98

0.029791180.02 0.029161180.20

0.009231172.67 0.005321172.76

- I 0.001221172.56

1.0 I 0 1.0 I 0

0.077981-20.83 0.079471-20.73

0.027931- 4.83 0.02925\- 5.06

I 0.00998\ - 8.60

TABLE 4.3 Modal Convergence for Flutter at Steady Lift for a = 0.01 "ad.
(M = 9.4, P = 0.01, i = 0.25, A = 0.1, S = 0.1, , = 25. C = 0)
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FIGURE 4-1 Resolution of Applied Steady Loads into Components
F • Fx z

o 0

FIGURE 4-2

x

Resolution of Unsteady Airloads into Components
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FIGURE 4-3(a) Hass and Stiffness Matrices Appearing in Equation
(4-19)
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III

Chapter V

THE DETERMINATION OF AEROELASTIC MODES FOR ARBITRARY VELOCITY

A. Incompressible Strip Theory Airloads for Arbitrary Motion

The procedure for determining flutter velocity developed in

Chapter IV has several drawbacks. It requires a matched point analysis

in which an estimated velocity U used to calculate steady deflectionse

has to be iteratively matched to the lowest calculated flutter speed

U
F

for the proper structural damping. Consequently the solution for

a stability boundary over a range of lifting conditions can be lengthy.

Furthermr're, intermediate computations have no physical significance

and are )f limited q'.lalitative value. The behavior and degree of

stability of individual aeroelastic modes, which becomes more inter-

esting with the addition of the fore-and-aft bending degree of freedom,

has proven to be difficult to deduce from the V-g solutions. The

only quantitative information available pertains to the neutral stability

conditions found for the mode which experiences ~lutter.

We would like to have physically meaningful information regarding

dynamics of the system at any desired speed. That is, we would like

to know the complex eigenvalues of the aeroelastic modes at subcritical

and supercritical velocities. Obviously a major drawback of the V-g

method is its dependence upon simple harmonic air louds.

Several solution procedures were studied, which replace the

Fourier transformation with respect to t by Laplace transformation

with respect to t and obtain at least an approximation to the modal

stability below and above the flutter velocity. The p-k method, a

.'. .-,~... ,,·~;·,i:·'"'··';.A ".



British flutter analysis technique (Ref. 8), uses the same simple

harmonic air loads but assumes that these loads are approximately com­

plex eigenvalues s = a + iw , where w is the frequency used in

calculating the air10ads and 101« Iwl
Another approach, commonly applied in helicopter blade stability

analysis, involves use of quasisteady aerodynamic theory by assuming k

is small enough to permit C(k) ~ 1. Laplace transformation of the

system then yields only linear and quadratic terms in s. Linear

matrix techniques can then be used in determining the roots. This level

of approximation neglects entirely the eff~ct of the unsteady wake upon

the circulatory airloads and is not appropriate for the magnitudes

of reduced frequencies observed in many flutter calculations by the

V-g method.

A third possible course is to apply an augmented-state method,

which approximates the actual unsteady aerodynamic loads for arbitra.ry

motion with a transfer function re1hting airfoil displacements to loads

having a rational Laplace transform, resulting in a linear matrix eigen­

value problem for the aeroe1astic modes. Go1and and Luke (Ref. 9)

used this route to study wing bending-torsion flutter. They adopted

the R.T. Jones (Ref. 10) approximatil)n to the Wagner indicia1 lift

function to express unsteady air10ads in rational form, taking the

Laplace transform in time. In addition to their accurate description

of the basic bending-torsion aeroelastic behavior at all flight speeds,

Go1and and Luke demonstrated that the severity of flutter cannot be

reliably inferred from solutions by the V-g method.
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r,
Each of the techniques mentioned above attempts to gain information

about aer~e1astic modes whose p.ige~values have nonzero real parts. The

true effect of the unsteady wake on the aerodynamic loads for arbitrary

motions is approximated to varying de~rees. This is done quite well

fer most motions in the case of augmented-state methods, marginally

in the p-k method, and not at all in the quasisteady ~ase.

For present purposes all of these schemes were rejected in favor

*of the more exact approach developed by Edwards (Ref. 11). An impor-

tant contribution of Raf. 11 (adapted from Sears, Ref. 21) is the

definition of a generalized Theodorsen function to represent the exact

circulatory two-dimensional incompressible unsteady airloads in the

Laplace domain for arbitrary motions. The generalized Theodorsen func-

tion is expressible in terms of the modified Bessel functions of complex

argument K and K
1

as
0

(5-1) C(s)
K1(s)

- K
o

(8) + K
l

(5)

where

sb
s = V

Although previous investigators had recognized that this form was

convergent for the right half plane, representing divergent oscillatory

motions with Re(s) > 0 • the restriction on the integral definitions

of the modified Bessel functions caused some investigators to believe

that convergent oscillatory motions (s in the left half plane) could

*See also Milne (Ref. 22).
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not be so represented. Edwards observed that Ko(S) and Kl(s) are

defined and analytic throughout tlu~ s-plane except for a brM.ch point

at the origin. 1~len one places a branch cut along the negative real

axis, C(s) can be shown by analytic continuation to relate circulatory

loads and displacements throughout the s-plane exc~pt along this cut.

It is, in effect, an "aerodynamic transfer function" in the Laplace

domain.

With substitution of s = ik in (5-1), the fam:Uiar Theodorsen

function of reduced frequency for simple harmonic motion is recovered.

Although arbitrary motion is now being considered rather than simple

harmonic motion, the two approaches yield similar forms when the initial

conditions arising in the transforms are neglected. In fact, the simple

harmonic airloads (4-18) and (2-3) can be used for arbitrary unsteady

motion simply substituting C(s) for C(k) and s for iw.

The modified Bessel functions are computed from their ascending

power series expansions, as mentioned in Ref. 11 anrl described in

Appendix B. Since the transforms of aerodynamic loads will be multiple­

valued functions because of the branch point of C(s) at the origin,

the convention

- IT < Arg(s) < IT

is used for the cut on the negative real axis. The generalized

T1:leodorsen function is computed by Edwards in the form C(re
i8

) for

representative values 0 < 8 < IT. It is shown to approach 1 as

r + 0 and ~ as I' + 00 for all e.
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With the ability to compute unsteady two-dimensional incompressible

airloads for arbitrary motions in hand, the simple harmonic stability

analysis de~eloped in Chapter IV can be generalized for this case. All

of the true aeroelastic eigenvalues and eigenfunctions can be obtained

for any prescribed speed U
e

Stability can be displayed with root

locus diagrams. The solution technique is developed in the fol1owin~

ser.::tion.

B. Solution for the Aeroelastic Roots b2 Means of Assumed Modes

Formally, the procedure for developing the modal equations needed

for the true aeroelastic modes throughout the complex plane begins with

Laplace transformation of the linearized equ~tions of motion (3-25).

The transformed perturbation displacements are then expressed as series

expansions in the assumed modes as

nw
l

(y;s) l: f (y)q (s)
i:::1 Wi Wi

n
(5-2) v1 (y;s) l: f (y)q (s)

i~l Vi Vi

n
;Pl (y;s) r fq'l (y)qet> (s)

i=l i i

A system of homogeneous, linear. algebraic equations in the generalized

displacements qw • qv • qlj> can then bE! derived by Galerkin' s
iii

m<athod, as before. Nontrivial solutions are given by the zeros of the

determinant in s. Since the coefficiel,lts in this determinant which

arise from the aerodynamic loads will contain the nonrational function

C(s), this will not be a polynomial eigenvalue problem. Roots

s = cr + iw will thus have to be obtained by iteration.
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Since full development of the modal equations is analogous to that

for the simple harmonic case, the stability determinant in swill

simply be constructed directly fTom the modal equations for simple

harmonic motion defined by (4-12), (4-18), and (2-3). One replaces iw

by s, ik by s, and eliminates g. The elements of the aerodynamic

matrix given in (4-18) for simple harmonic loads become, for arbitrary

motion,

Q•.
= {~w (i=j)

J,l

(i'fj)

Qj,i+2n = -(L - AI: )1. iIf> W J

Q'+n i 1:1 - L )C1 (i=j)
J , w

(ijj)

(5-3) [L -. 1 -
Qj+n,i+2n ~ - - + A(l-L )J1 C1

<P 5 w ji

(lSiSn)
Qj+2n,i =. - (M - Ai: )1w w ij

(lSjSn)

~:[i\. -A(L. + MwJ + A2 L ]Qj+2n,i+2n = (i=j)w

l (ijj)

~,i+n 0 for 1 < \) < 3n

in which

M .. "J
w

- 3 1
t'Iep .. '8 + ~

E". = ~ + ~ [1 + 2C(s)] + 2 C(s;
0/ S $2

1 + 2 C(~)
s

L
w

(5-4)
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'l."hese aerodynamic loads are based on the assumptions discussed prior

to Eq. (4-13).

With the same mass and stiffness matric~s M and K illustra~eds s

in Fi~. 4-3, and the aerodynamic matrix Q whose elements are defined

by (5-3). the matrix form of thE' ,lo,1al equations in s becom<:.s

(5-5) o

(5-5) may ~·e compared with the simple harmonic form (4-19). It is

convenient to define a dimensionless Laplace transform variable

(5-6) p - st/{;~d

which is related to the reduced Laplace transform variable throu~h the

dimensionless velocity by

(5-7) - sb p
s = V = U

The stability determinant thus takes the form

(5-8) Ip2([M 1 + [Q1) + [K 11s s o

Zeros of this determinant will yield 3n exact roots for the aero-

elastic modes in terms of the 3n assumed modes. These roots describe

modal frequencies and stability at the speed U
e

used to calculate the

steady-state deflections which enter as coefficients in the stiffness

matrix.

A computer program was de~eloped to locate numerically the zeros

of the determinant (5-8); the logic is outlined in Fig. 5-1. 1bis
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format proved to be quite convenient for constructin~ raot lo~us

diagrams having either the speed U. the root an.gle of l\ttack a..

or the drag parameter C as the changin~ parameter. Any of the impor­

tant aeroelastic modes. at any degree of stability. could be traced

through the COmplf!X plane as long as the llr.i;::ial guess of s was

sufficiently close to its particular root locus.

Since the determinant order is 30. and n > 2 is desirable to

model <\dequately the physical system, nu.merical expansion of the

determinant was not practical. A library subroutine, employed to

calculate the comple~ determinant. proved to be the source of numerical

difficulties. It was found that for 1 < n < 4 and a. = 0 the

Fib' (5-1) program gave accurate re~ults when compared to parallel

V-~ method neutral stability computations. agreeing to at least seven

digits in flutter speeds. For n = 2 and a. +0 , which gives rise to

steady deflections due to Ii.ft. similar good a~reement was encountered.

But for n > 3 and a +0 , the program converged on zeros which

did not match the neutrally stable V-g predictions and were obviously

incorrect from a physical standpoint. Subsequent investigation revealed

that the nUloerical difficulties originated in the library subroutine.

When a. = 0 the fore-and-aft bending degree of freedom is dynami­

cally uncoupled, and the order of the determinant which was actually

computed by the library subroutine was reduced to 2n. Thus. for

n : 3 and a: 0 , the actual computed determinant was of order 6.

whereas for n: 3 and a ~ 0 the order was 9. For the latter case

the actual magnitude of computed determinants was often 0(1016) "

while for a. = 0 the n = 3 determinants 0(1010). For n = 2

98



and ~ = 0 determ~nants again were 0(101°). The magnitude of the

computed determin~nt thus appears to be related to the numerical

difficulties. Since n = 2 results are judged to model the problem

adequately and never encountered numerical problems, correction of the

above difficulties was not pursued.

As a result, all root loci shown herein for steady lifting condi-

ti0ns involve n = 2. As will be discussed, however, this Le~triction

does not compromise the 1D0delinj:!; of the physical system nor preITent

qualitative understanding of its behavior. Furthermore. numerical

results always agree reasonably well when compared with V-g computa-

tions for n = 3 • a ~ 0 •

The algorithm used to estimate the zeros Gf the determinant in

the s plane. using an initial guess so' is illustrated graphically

in Fig. 5-2. The complex determinant is first calculated at So and

at the two related points s + .001 and s + LOOl. Points A and C
o 0

3re then determined, at which linear extrapolation in the two orthogonal

directions pn:·dicts that the real part of the determinant \1ill vanish.

SimU arl\' po lilts Band Dare predic ted. for whi ch the ima~inat"y part

vanishes by extrapolation. A new guess for the root sl is then

determined as the intersection point of dashed lines in the figure.

The process is repeated until satisfactory convergence is realized.

This siimple scheme worked quite well and never failed to conver~e on a

root, usually within four or five i tera tions. The convergenco: cri terion

Typical performance of t:he

algorithm is documented in Table 5.1.
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C. Mode Shapes for Ae~oelastic Modes

The mode shapes associated with roots determined for arbitrary

motion by the determinant iteration method w~re conveniently calculated

with the same linear eigenvalue routine applied in solving the simple

harmonic ~tability problem. For a root computed by iteration, the

nonrational aerodynamic tenus containin~ C(s) in the matrix Q

can be immediately evaluated. Thus one is led to a conventional matrix

eigenvalue problem, which <'otains the same root as one of its eiRen­

v8lues and also provides its eigenvector. This appro~ch worked well

and. as a bonus, verified the sccuracy of the roots computed by the

determinant iterntion scheme.

Since numerical difficulties were encountered with the determinant

evaluation routine for n = 3 and ~ ~ 0 , this eigenvalue approach of

recheckin~ its results for n - 2 • ~ ; 0 (and for all n with ~ 0)

is valuable. It offers the only means of verifying computed roots

lying off of the iw axis. Correlation to at least six significant

digits was always observed. Moreover, the accuracy of the n - 2 ,

Ci ;.. 0 deti"rm;.nant iteration solutions has been checked for a few

representative cases by lettin~ n - 3 in t~e eigenvalu~ routine, with

the known n = 2 root as a first guess to evaluate the aerodynamic

loads, and iterating until the true n· 3 root is obtained. Two

cases for which this was done, together with their eigenvectors, are

ShO~l in Table 5.1, where n = 4 roots are also given. The n = 2

results obtainable by the determinant it~ration routine are thus seen

to be 2cceptably accurate even for the higher frequency mode.

100

"11I1""~·'1·"1'11.""''''''~-··~··---'''·_··''·,~, "., ""-...,.• '" .-...



D. Inclusion of Unsteady Chordwise Loads Due to Leading Edge SuctiOll

Since motion of the wing in fore-and-aft bendin~ is permitted.

unsteady chordwise loads C9~ participate in the dynamic stability

problem. Unsteady two-dimensional incompressible airloads given in

Eqs. {4-18} and in (5-3) are strictly based upon the assumption that

the instantaneous resultant unsteady lift on anv dirfoil section alon~

the span is always perpendicular to the ~irection of the free stream

velocitv. Two-dimensional incompressi~le potential flow theory, however,

does predict an unsteady leading edge suction force which arises from

the inverse squale root singularity of the vorticity distribution alon~

the airfoil chord at its leading edge. This e~fect will be included

into the analysis within the. framework (:')f the linearized unsteady per-

turhation theor)' used to cletermine stability. The effect of the unsteady

propulsive force 011 stability can then easi1~' be isolated b~' comparison

of roots computed for' t.he (4-18) airloads directly vith roots determined

with the airloads derived in this section.

The existence of a l~ading-ed~e surtion force due to the leading-

edge siu6ularity was determined by Von Karman and Sears (Ref. 12).

Greenberg (Ref. 13) in developin~ the propulsive force on an airfoil

in an ~scillating stream. states that a propulsive for~e acting on the

airfoil in the upstream direction.

(5-9) Fs

arise!; from the unsteady vorticity distributiot'l. which behaves at the

leading edge as

y!(5-10)
Yo ->- -1

2CF I
11) I:"~l x ~ -1
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In this application the coefficient C
F

will contain contributi~ns

from the superposed vorticity distributions due to the steady and the

unsteady lifting flow fields. Therefore CF will be a sum of steady

and unsteady parts, and c; will involve a steady portion, a linear

unsteady cross multiplication part, and a nonlinear quadratic unsteady

term. In the context of the linearized unsteady perturbation approach

to stability analysis, only the cross multiplication term will enter

the dynamic equations. To include consistently the nonlinear unsteady

propulsive force effect on stability, the nonlinear structural coupling

terms discarded during linearization would have to be reintroduced.

As a consequence of linearization, the unsteady propulsive force

can be included only when both steady and unsteady vorticity distribu-

tions are present. Thus the case of zero steady lift will have no

contribution due to this effect to the state of stability. The effect

will become increasingly pronounced as the steady lift is increased.

T;le vorticity singularity strength C
F

in (5-9) was given by

Garrick (Ref. 14) for an airfoil oscillating in a uniform stream as

(5-11) I2b ([h .... Va + bcX(~-a) le(k) - ~ba}

with h positive downward. Converting to present notatiQn, introducing

the generalized Theodorsen function, and introducing superposition of

steady and unsteady deflections gives

h .... -
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(5-12)

The propulsive force F ,using (5-9), iss

(5-13) F
s

The last squared term is the nonlinear time-dependent com:ribution and

is neglected hereafter. The first squared term is the propulsive force

on R flat-plate airfoil at incidence in steady flow. The resultant

steady aerodynamic force should act at right angles to the free stream

velocity in pot€ntial flow, and this steady propulsive force can be

interpreted physically as the component which tilts the resultant lift

vector, obtained by summing the pressure distribution at right angles to

the chord, forward to become normal to the airstream.

The propulsive force can thus be seen to correct for the chordwise

component of the lift which is computed normal to the airfoi] chord.

The assumption incorporated into (4-18) that the unsteady circulatory

lift acts at right angles to the airstream must be discarded and t.he

force assumed rather to be normal to the chord of the airfoil in its

steady-state orientaticm. The assumed direction of forces 1.5 shown in

Fig. 5-3.

In the structure axis system, the loads are
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(5-14)

F C08~ + L 81n$
s 0 a 0

'" L
.1

C()s<j! + 1~ s in¢
o 8 0

The f 0 11Cl\dng us sump t i ans a re made

cos<jl ::; 1.
o

s1n¢ ::: ...o '1'0

F sinep « L
S (l a

80 that

;; L
a

The 11ft for arbitrary motior. i.n time is ~iven by Ref. (5) as

(5-1t'l)

Combining (5-1&) and the linear unsteady part of (5-13) into the second

of (5-15) yields

(5-17)
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The loads can now be arranged into the unit generalizer. force

format of (5-3) by Laplace transformation in time, substitution of the

al3sumed modes as in (5-2), and formation of the generalized forces from

relations such as (4-11). After this work, which is straightforward,

the elements of the aerodynamic matrix which incf)'t"porate the linearized

unsteady propulsive force are

(5-18)

Qj+n,i+2n

n
+ (2-i) E H ij q1

w \)=m+1 \) 'I'\l

2[LA - ~ - 4 + A(l-L )]1 a
'I' s w ji

(1$.i$.n)

(1Sj$.n)

+ [i:tjl - 1
4
-s

n

+ (2-1 )A] L Y. i q:
w v=m+1 JV 'l'v

where the new modal integrals appear,

(5-19)

The remainder of the terms of the aerodynamic matrix remain the same

as in (5-3).

Prior to actual calculations a further approxim~tion is made.

The terms in (5-18) which depend on sums of

eliminating the need to compute the YiVj •

qO are neglected,
<l>v

This is equivalent to

assuming that the lift L
a

in Fig. 5-3 is aligned with the z-axis and

that <Po is neglected relative to a in the linear term of (5-13).

Strictly, this simplification will alter the results somewhat, but it

is net expected to change the overall effect ~f the propulsive force
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on stability and does simplify computations. The first order trend of

the effect of 100% leading edge suction on stability is the main point

of interest and should not be affected.

The changes made to the aerodynamic matrix are therefore substitu-

tion 0f the terms

(5-20) Qj+n,i {~(l-Ew). (i=j)

(i;( j) (l$j $. n)

2[Lcj> - ~ - 2 - (lSi$:rJ,)
Qj·~n, i+2n -= + A(l-L )]1 0i a.

s w J

for their counterparts in (5-3).

The program described in Section B includes the opticn of using

either of these unsteady aarodynamic force systems, atid a comparison of

their relative effect on stability is made in the next chapter. Except

for the 2

s
term in the second of (5-20), incidentally, the newer

system simply involves doubling the magnitude of the terms in (5-3)

that are replaced.
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M = 40, P = 0.005, i a = 0.25, A = 0.1, S = 0.1, L = 25, a = 0, n = 3,

C = 0 , U = 6.S

ITERATION - DETER}IINANT AT ss
--

0 -0.072968 + iO.0582071 9 10O.326xlO + iO.1266xlO

1 -0.078290 + iO.067052
9 . l3

-0.259x10 + iO.504x10

2 -0.079541 + iO.065839 8 70.106x10 + iO.504xlO

3 -0.079527 + iO.065910 6 60.106xlO - iO.178x10

4 -0.079526 + iO.065910 -0.2Blx104 + iO.499x104

M = 40, P = 0.02, i = 0.25, A = 0.1, S =.0.1, T = 25, a = 0.02, n = 2,a
C = 0, U = 7

--- DETERMINANT AT sITERATION s

0 -0.0055179 + iO.Jl9612 0.261x1011 - iO.253xlO10

1 -0.0014167 + 10.1074866 0.125xl010 + 10.428xlO10

2 0.0005501 + 10.1085285 7 + iO.135x109-O.459xlO

3 0.0005027 + iO.1084861 -O.129x1Q6 + iO.178x106

4 0.0005026 + 10.1084861

TABLE 5.1 Performance of the Deter~minant Iteration Algorithm for Two
Cases, One Nonlifting With n = 3 and One at Steady Lift
With a = 0.02, n = 2
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STEADY-STATE DEFLECTIONS:

n = 2 n = 3 n .. 4

qO Ib 1.97768 2.01496 2.019088w
ol/b 0.022566 0.023221 0.023274qw
02/b - 0.001453 0.001464qw

q03/b - - 0.000271w
04/ b 0.003170 0.003534 0.003594qv
ol/b -0.00363 -0.000403 -0.000407qv

q02/b - -0.000044 -0.000046v
03/ b - - -0.000007Gv
04 0.0068192 0.0072034 0.0072456G¢

qa1 -0.0001112 0.0000129 0.0000303
¢2

-0.0000130GO - -0.0000322
<P 3qO - - -0.0000103
<P 4

M .. 40

P .. 0.005

i = 0.25a
A == 0.1

S = 0.1

T ... 60

a '" 0.01 RAD.
C = 0

U '" 7

ROOT FOUND BY DETERMINANT
ITERATION WITH n = 2: p = 0.03579 + iO.55875

RESULTS OF LINEAR EIGENVALUE ANALYSIS FOR n = 2, 3, 4:

.
n = 2: n = 3: n = 4:
p = .035795 + i,55875 p == .036828 + i.52903 p = .036486 + i,52309

AMPLITUDE: AMPLITUDE:
,

i
PHASE PHASE AMPLITUDEj PHASE

i-

I 215.400 : 218.17°I~ lb' 4.2245 4.6573 I 217.75° 4.7497
- lib I ° I1.2064 I -40.51 1.1808 -37.53° 1.1815 I -37.07 0
qw

I- 2
/b - I 0.03432

I
-18.25° 0.03544 I -17.97°G...

- 3
/b - I - I 0.00530 I -12.46°Gw

- 4/b 0.083839 I - 7.710 0.87304 I - 8.79° 0.88887 I - 9.12°qv
- l/b 0.05128 I 181. 23 0 0.05146 I 181.49° 0.0504871 181.93°qv

I- 2/b 0.009128 I 169.96 0.0093141 169.120
Gv - Iq 3/b - I - I 0.0021351 165.92°
_v4 I
G¢ 1.0 I 0.0 0 1.0 0.0 0 1.0 I 0.0°
- 1 0.05780 1-33.85° 0.07738 I -30.30° 0.08213 I -29.93°q<j> i- 2 I 0.02511 -19.79° 0.02969 I -18.96°qcjl - I' I
- 3

I I 0.00912 I -22.80°qep - -
4 I I

TABLE 5.2 Modal Convergence for Convergent and Divergent Oscillatory
Aeroe1astic Modes (see Fig. 6-24(a»
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ROOT FOUND BY DETERMINANT
ITERATION WITH n = 2: p ~ -0.216505 + 11.632293

RESID..TS OF LINEAR EIGENVALUE ANALYSIS FOR n = 2, 3, 4

I
n '" 2: n = 3: n = 4:
o = -.2165053 + i1.6322931 p = -.21485 + i1. 59221 p '" -.21564 + i1. 57794

AMPL~TUDE I PHASE AMPLITUDE: PHASE AMPLITUDE I PHASE
I I- Ib 0.02478 I 175.84° 0.02627

I
175.18° 0.025894 I 174.95°qw

1 I I I
qw Ib 0.05039 I 181. 31 ° 0.07554 I 178.03° 0.07883 I 177.63°

2 I Iqw Ib - 0.02535 181..07° 0.02054 I 178.99 c

3 I I I 159.19°q /b - I -
I

0.00047w4
I I 6 °q /b 0.14780 160,48° 0.14548 I 160.42° 0.14364 I 1 0.30

vI Iq /b 0.04973 181.88° 0.05680 I 181.47° 0.05937 I 181. 34 °v2 i
0.000618'q /b - I 122.60 0 0.000565 I 242.35°v

3 I I
0.000081 I _6.87 0q Ib - - Iv4 I I- 0.0 0 I 0.0 0 0.0°q<jl LO

I
1.0 1.0 I1 I i 175.24" Iq<jl 0.2048/+ I 175.75 0 0.18586 175.28 0 0.18223

2
I I I 176.S0°q<t> - 0.05215 I 176.65° 0.05252

_ 3 I I
qcjl - - I 0.01955 177.66°

I I4
I II

TABI.E 5. 2 CONCLUDED
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INITIAL GUESS FOR s
1-

CONDITION: a •C, U
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FIGURE 5-1 Flow Chart for Locating Zeros of (5-8)
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Chapter VI

AEROELASTIC MODES USING AIRLOADS FROM INCOMPRESSIBLE STRIP THEORY

A. The Effect of Steady Drag on Flutter of_a Non1ifting Wing

Before considering steady-state deflections due to lift, a thorough

understanding of the stability behavior of the cantilever win~ at zero

steady lift is needed. With w and ~ at zero, the fore-and-afto '1'0

the remainin~ n

bending degree of freedom is dynamically uncoupled from vertical bending

and torsion motions, and the system analyzed in Ref. 1 results. In the

zero lift case, then, solutions for stability involve 2n aeroelastic

modes consisting of coupled motions in WI and ~l

modes represent uncoupled free vibration in each of the assumed modes

in vI. As demonstrated in previous chapters, the flutter conditions

obtained by this assumed mode analysis compare favorably with Ref. 1

results over all practical combinations of the parameters M. P • i~

A , S , and C. Owing to this good agreement, the results and conclu-

sions of Ref. 1 apply here as well, yet the assumed mode solution method

still is useful in providing additional insight into the flutter behavior

of the nonlifting wing.

The parameters M, i~ , A ,and S offer no suprising effect,

and most importantly here, the nature of their influence is not altered

by the inclusion of drag. The Ref. 1 results indicate that an increase

in the elastic axis - A.C. offset given by A is destab1izing, an

increase in the sectional C.G - elastic axis offset given by S is

destabilizing, an increase in the radius of gyration parameter i~ is

stabilizing, and that the flutter speed is approximately proportional

to the square root of the mass ratio parameter M. Since Ref. 1
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establishes that the influence of drag is not aensitive to these four

parameters, more detaile~ study tn this area is not considered here.

The most curious finding of Ref. 1 involves the effect of C in

conjunction with the aspect-ratio parameter P, which is the product

of the vertical bending-to-torsion stiffness ratio with the inverse

square of the geometric aspect ratio. The effect of steady drag on

flutter speed is stabilizing for smalJer aspect ratios (larger P}but

destabilizing for larger aspect ratio wings. The reversal of the effect

of drag on flutter occurs near p. 0.01 t and the behavior in this

neighborhood, including flutter mode shapes, appears to be quite

interesting. No conclusions regarding physical causes of this phenomenon

were made in Ref. 1, however.

Figure 6-1 is a reproduction from Ref. 1, showlnR the effect of

drag on flutter speed as a function of P for intermediate values of

M , in ' A ,and S. Numbers in parentheses on the abscissa give the

true aspect ratio for a typical value of the ratio Elx/Gld = 1.6 •

Clearly wings of practical interest include the region within which the

effect of drag on flutter appears to be most int·'~~esting.

To help gain a better physical understandi'ng of the behavior near

P = 0.01 , flutter solutions for this same example have been fo,md via

the simple harmonic method of Chapter IV, over the range 0.002 2 p~ 0.02.

Results appear in Fig. 6-2 that show flutter speeds and flutter mode

shape amplitudes and phase relations as functions of P stnce a

finite chordwise to vertical bending stiffness ra~io T must be

specified, and the effect of drag on flutter depends on L as in

Fig. 4-15 the value T = 50 was used to allow adequately for the
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T ~ ~ behavior inherent in the Ref. 1 formulation. Three assumed

modes in each degree of freedom are used.

The flutter speeds in Fig. 6-2a closely match the Fig. 6-1 results.

The flutter mode shapes include participation by the three generalized

displacements q¢ , ~ , and ~ , with the remaining assumed modes
1 1 2 .

contributing negligibly to the motions. In Fig. 6-2b the amplitude and

phase of the two assumed bending modes at flutter are shoWll for unit

magnitude and zero phase angle of the first assumed torsion mode.

It can be seen that for any C the sharp crop in flutter speed

that comes with decreasing P is accompanied by a sudden change in the

flutter mode shape. The amplitudes of the two bending modes merge, and

the second bending mode undergoes a large phase shift. Further decrease

in P gives a gradual separation of the assumed bending mode amplitudes

with the fundamental mo~e again becoming dominant.

To help visualize the physical appearance of these flutter mode

shapes, phasor diagrams of the spanwise distribution of bending displace-

m~nts. for C ~ 0.02 , are given in Fig. 6-3 for five values of P.

Arrows depict the modal generalized displacements from Fig. 6-2, and

the curves give the relative displacements along the span ~nd their

phase referenced to q<jl . For both P = 0.02 and P = 0.002 all
1

stations are nearly in phase and the mode shape is dominated by the

first assumed bending mode. But for the intermediate values of P .
where the transition in phase of the second bending mode takes place.

the displacel,\ents at different locations along the span can be over 90°

out of phase.
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The b~havior of flutter modes in this range of P offers the

greatest di.screpancy found between the results l"eportoed in Ref. I and

the assumed mode soluticn, suggested by Fi~. 2-1. For P < 0.04 in

Ref. I, collocation at only five spanwise stations was used, and the

mode shapes in bending and torsion were permi.tted to have spanuise phase

differences. It was found, however. that these phase differences never

exceeded a few de~rees, in contrast to the results presented here.

Possibly the use of only five spanwise collocation points did not allow

enough freedom to represent the flutter mode shap~ trnnsition found

using assumed modes. In any case good agreement between flutteJ:" speeds

and frequencies is still observed for the two methods.

Figure 6-2 seems to indicate that the second assumed bendin~ mode

plays a significant role in the ieversal of the effect of drag on flutter

near p = .01 • which coincides with the natural frequency of this mode

crossing the flutter frequency. Interaction of actual aeroelasti~ modes

is masked by the limitations of the solution method, however. which only

gives neutrally stable solutions. In order to better understand these

results, tite Laplace transform approach of Chapter V is used to allow

tracin~ all of the aeroelastic modes in the complex plane for speeds

from zero int,o the supercl-itical range.

Figures 6-4(a) - 6-4(h) give root locus diagrams for increasing

speed at ei6ht representative valoes of aspect-ratio paratneter P.

Each locus originates for U" 0 at one of the nonnal modes of free

vi1:>ration of the structure, which are easily calculated in terms of the

uncoupled assumed bending and torsion modes. Zero dr:l~ branches are

shown in ~ll of the figures, ~ith loci correspondin~ to C ~ 0 added

where their behavior differs significantly frQ~ that for zero dra~.
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The first two figures represent stubby low-aspect-ratio wings, for

which the strip·-theory aerodynamic assumption is certainly inadequate.

Due to the manner in which the Laplace variable p is nondimensionalized,

the predominantly first torsion normal mode of free vibration remains

essentially fixed on the iw axis near 1.6 on all of these diagrams.

The predominantly bending normal modes move down the iw axis as P

decreases, since their natural frequencies decrea:se relative to the

torsion frequencies. In Fig. 6-4(a) the bendin~ branch of the aero­

elastic modes leads to flutter, whereas in Fig. 6-4(b) the torsion

b~anch eventually becomes unstable. The normal mode havin~ the third

lowest natural frequency, predominantly the second bending assumed mode,

occurs well up the iw axis and off these two diagrams and has negligible

influence on flutter. These low-aspect-ratio cases show entirely two­

degree-of-freedom behavior and closely resemble the root locus given

cy Edwards (Ref. 11) for ~ typical s~ction in plunge-and-pitch motion

in incompressible flow.

Figure~ 6-4(c) and 6-4(d) represent values of P just above the

condition where the effect of drag on flutter reverses. Although the

flutter phenomenon is still similar to that for lar~er P • the third

normal mode frequency has now decreased sufficiently to appear on the

diagram, ~nd it produces a branch which does not lead to flutter for all

values ('If drag.

According to the flutter curve of Fig. 6-2, for P = 0.01 the

cases C = 0.02 and C = 0.04 result in decrease of flutter speed

from the zero-drag condition whereas for C = 0.01 it is still increased.

Figure 6-4(e) gives the P = 0.01 root locus, which ~eveals that the
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aeroelastic mode emanating from the predominantly second bending normal

mode now plays an important role. The next illustration, Fig. 6-4(f)

with p; 0.007, gives this branch as becoming unstable for all C.

Ip. the final two of these illustrations, with P = 0.005 and 0.002

the flutter phenomenon appears to be returnin~ to the type of behavior

seen for small-aspect--ratio wini!;s. with the second bendinA contd.bution

assuming a lesser influence. In Fig. 6-4(h) a fourth normal mode, the

third bending mode. has made its appearance but does not noticeably

influence flutter.

The nature of the aeroelastic modes on the various branches of the

root locus diagrams can be clarified by looking at their mode shapes.

In Fig. 6-5, phasor diagrams are used to show C = 0 mode shapes for

each branch of the .005 locus (Fig. 6-4(g». At selected speeds both

subcritical and supercritical, the generalized displacements are shown

with the phase angle of q taken as zero.
CPl

The dependenl:~ of drag's effect on flutter upon P is a130 gi'\'en

for a second configuration havin~ a smaller mass ratio M = 9.4 , more

representative of light aircraft and sailplanes. Shown in Fig. 6-6,

the basic behavior resembles the first configuration, with certain

differences. For example. the reduction in flutter speed by drag for

small P is moderate relative to that for the larger mass ratio; this

is also seen in the tabulated Ref. 1 results. Also the transition as

P reduces through the 0.01 region is much less severe. Again the

reversal coincides W'ith the crossing of the second assumed mode· frequency

below the flutter frequency.

In eond usion. assumed mode results attribute the reversal of the

effect of drag on flutter speed to the interaction of the structure's,
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~;(,'·<:(li:vl natun::]' bending mode with the basic cantilever INing flutter

nioclmoism involving the first bendin~ and first torsion maries. The

ex~ct re~so" that drag increases the flutter speed for P above this

apparent "resonance" condition and decreases it for smaller P is not

evident in these results, and like many Hcroelastic phenomena may not

hove 8 simple physical explanation. It does appear, however, that the

drag force enhances the coupHng of the second bending mode into the

flutter b~havIDr and thereby magnifies its already pregent effect on

flut te r speed.

Since the Ref. 1 tabulated res'.llts give a fairly complet~ !)icture

of flutter of the nonliEting caSe in the presence of steady drag and

are not disputed by current results, further work herein is directed

to\olards the more general case jnvolving steHdy deformations due to lift.

B. Effect of Steady Deformations Due to Lift

The good agreement in prediction of dynamic stability betINec;.1l thre

('IIlTent ;~nalysis Hnd the Ref. 1. collocatiGn method for nonliftin!1, wings

INHIt 11 steady drag force included furnishes ~onfidenc.t' thnt the modnl

schen\e IN'lli be successful for. steady lifting conditions. The effect of

steady deformations due to lift i.8 incorporated :lnto the dynamic

stability analysis by the same means as the steady drag effect-- namely

through coeffLcicnts of th''. sti ffness matrl" detet'll!.! ned In a separate

nonlinear solution for the steady-state deflections. Thus, the agreement

indicates that the scheme allowing small time dependent perturbations

.lbout a static deflection is working proper.l)'. \~hen steady li rting

def lections ar~ introduced through H nonzero root angle of :utncK. Ct ,
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the fore-and-aft b~nding is no longer dynamically uncoupled.

Coupling in both elastic terms (the stiffness matrix coefficients

containing w
o

and ~o) and aerodynamic couPling terms (arising from

unsteady aerodynamic force components in the x-direction) now appear~

in the, fore-and-aft be:nding dynamic equations. The 3n aeroelastic

modes will consist of coupled motions in wI ' lJl 1 ' and vI'

Three basic wing configurations are selected to illustrate the

effects introduced by steady-state lifting deformations. Parameters

M , i~ , A ,and S are taken the same as in Fig. 6-1, and aspect ratio

parameter P is assigned three different values in order to consider

wings of large, moderate, and low aspect ratio. For large aspect ratio,

P = 0.005 is chosen to provide a case for which steady drag decreases

the flutter speed (Fig. 6-1). A meode't'a::e aspect ratio example with

p = 0.02 having an increase in flutter spe,-,~ due to steady drag, and a

lOloi-aspect-ratio case, P = 0.1 , are also included. For the typical

bending-to-torsion stiffness ratio

1.6

these examples correspond to actual retangular p1anforms having aspect

ratios of 17.89. 8.94 ,and 4 respectively. The bending stiffness

ratio T now becomes important, and is given the nominal value 25.

The essential features of the flutter behavior encountered when steady

deformations enter can be illustrated by using these basic configurations

as examples.

The flutter stability boundary for the moderate-aspect-ratio example

is shown in Fig. 6-7 for C = 0 and C = 0.01; the steady bending



alternative would be to show flutter speeds as a function of a, but

this is a poor means for comparing curves having different steady drag

displacement w
o

of the wingtip is the measure of steady lift. An

and gives no information about the elastic steady deformations. A

better way to indicate the steady flight condition would be the total

lift force on the deformed wing nondimensionalized, for example as

U 2
4EI b' As can be seen in Fig. 6-8 this dimensionless total lift para-

x
meter, which depends on the steady twist ¢ (y) , varies for constant

o

wingtip deflection as C changes for points along the stability

boundary of Fig. 6-7. This is because the drag force alters the rela-

tive l/lo and wo
distributions for the same total steady lift. But

since this effect is small, aed w
o

gives the best indication of the

magnitude of the steady equilibrium deflections. this deflection is used

to indicate the steady lift condition. In Fig. 6-7, the semispan of the

Wing is about 9 semichords, and steady deformations well exceeding the

limits of the moderate displacement beam theory are therefore shown.

This demonstrates that flutter solutions can be found for arbitrarily

l8r~e steady displacements and that it is a matter of practical engineer-

ing judgment to recognize when the assumptions made in the derivation

of the equations have been violated.

For C = 0 Fig. 6-7 indic;ates that the flutter speed reduces

continuously with increasing steady lift until a maximum reduction of

about 13% is achieved at an excessively large deflection of .4 semichords.

The frequency at flutter reduces monotonically with

is generally observed for all wing configurations.

1?1

w ; this effect
o



With steady drag included. the situation for the defom~d wing is

not as simple as it is for the a· 0 case. As exhibited by th~ non­

linear steady deformations shown in Chapter IV II drag cun greatly alter

the deformation state associated with a given speed and lC'OOt angle of

attack. Even more importantly, drag significantly reduces divergence

speeds, possibly to less than the flutter speed. This is revealed in

the stability analysis when the nonlinear steady solution blows up

before dynamic instabilities appear.

In Fig. 6-7 divergence speeds fou~d by the linear VT dot.minant

(2-29) are also indicated for geveral values of C. Results of a

dynamic stability analysis with C· 0.01 also appear. The flutter

speed for a = 0 and C· 0.01 is the single point on the ordinate

and is greater than the divergence speed for the same drag. During the

search for a neutrally stable oscillating condition fo~ the very small

angle of attack Q. 0.001 ra~. and C· 0.01 , the nonlinear steady

displacement solution was sensitive to U in the neighborhood of flutter

owing to the proximity of divergence. For specified larger angles of

attack, the C = 0.01 flutter boundary is found without difficulty.

~e slight increase in flutter speed due to drag observed for a - 0

appears to be preserved in the presence of steady deformations. For

decreasing ~, however, a point is reached as a + 0 at which the

steady displa.cements are still nonzero at flutter. For smaller steady

deflections divergence becomes the instability encountered for i.ncreasing

speed. For C = 0.02, divergence was observed for all lifting conditions

with no flutter points found.
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As steady deformation increases from zero, the flutter mode shape

undergoes a smooth transition, originating Witll the same zero lift mode

shapes shown in Fig. 6-2 for P = .02. For zero dr~g, the amplitudes

of modal genet'~lized displacements which contribute significantly to

the flutter mode are shown in Fig. 6-9, normalized to the first torsion

mode amplitude. Their phase angles relative to zero phase for q
~l

appear in Fig. 6-10. Participation by the first chordwise bending mode

increases steadily with increasing w ,reflecting the increased stren~th
o

of the elastic bending-torsion coupling. Vertical bending motions are

increasingly dominated by the first assumed bending mode, and the

contribution of the second torsion assumed mode increases significantly.

The flut.ter mode shapes at one steady lifting condition are presented

in Fig. 6-11 in a form giving a clearer physical description of toe

motion. Above the phasor did6~~m (which contains the information given

in Fig. 6-9 and 6-10) is a sketch of the cyclic path traced in the

x-z plane by wing sections at the wingtip and at midsemispan. Points

where the first torsion assumed mode is at phase angles of 0°, 90° ,

180 0
, and 270 0 are located. These diagrams emphasize the three-degree-

of-freedom nature which flutter can have whnn st.eady deflections are

present.

The low-aspect-ratio example (P = 0.1 and ~ ~ 4) shows only minor

effects upon its flutter characteristics due to steady deformations, as

might be anticipated. As given in Fig. 6-12, even for the extreme

condition a = .12 rad. yielding a 1.7 semichord tip deflection at

flutter, there is only a 0.62% reduction in flutter speed due to lift.

The flutter mode shapes (Fig. 6-12) undergo little change, with a slight
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contribution by qv the only new feature. Owin~ to these unremarkable
1

results, further work centers on the moderate-and-hi~h-aspect-ratio

examples, where the effects of steady deformation3 and chordwise forces

are significant and interesting.

For the high-aspect-ratio example with P = 0.005 , the flutter

behavior is quite different when steady dE!forlllations enter. Figure

6-13 shows the dependence of flutter speed upc~ the steady wingtip

bending deflection for two drag r.ases, CeO and 0.01. The minimum

flutte~ speed in this case is over 20% below its undeflected counterpart,

but quite interestingly as the stability boundaries do not

converge continuously to their respective zero lift flutter speeds but

approach lower points on the ordinate.

The flutter mode shap~s, Figs. 6-14, 6-15. explain this new

behavior. As the steady deflection becomes small, the flutter mode

becomes dominated by the first chordwise bending mode, and &s C'( 4- 0

this type of in~tability approaches simple free uncoupled vibration in

this degref"~ of freedom. For moderately large steady deflection the

flutter mode shape closely resembles that for the medium-aspect-ratio

wing, Figs. 6-9 and 6-10.

Flutter mode shapes for t~'o steady-lift conditions are diagrammed

in Fig. 6-16 using the same technique as in Fig. 6-11. Relative to the

P = 0.02 example. this wing shows a ~reater amount of participation in

fore-and-aft bending. and a greater contribution from the second vertical

bending mode. This mode's contribution causes the noticeable difference

in the eccentricities of the elliptical paths traced in the x-z plane

by different win?, stations. The phase relationship among

and qv appears similar in this and other examples.
1
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The most noticeable effect of steady drag again is its reduction

of the divergence speed. Figure 6-17 gives divergence speeds found by

the linear determinant (2-29) together with zero lift flutter speeds

for increasing steady drag for the moderate- and high-aspect-ratio

cases. Divergence is clearly more important relative to flutter for

the larger aspect ratio.

The effect of steady drag on the dynamic behavior (Fig. 6-13)

appears to cause only slight adjustments to the zero drag flutter -results

for any steady deflection. The flutter mode shape amplitudes and phase

angles show but small changes for the rather large drag C = 0.01

The flutter speeds fall just below the C = 0.01 divergence speed.

The stability boundaries in Fig. 6-13 do not allow for st~uctional

damping and give no feel for the degree of stability at speeds near

flutter. To gain a better understanding of the type of instability

that has been found with steady deformations, and also define the over­

all aeroelastic behavior. the Laplace transform approach detailed in

Chapter V is applied to the large- and moderate-aspect-ratio examples.

The true aeroelastic modes are then conveniently tracad in the complex

plane at any flight conditions using root locus diagrams.

Before showing the root-locus results, it is interesting to see

how stability is suggested by the simple harmonic method with nonzero

structural damping assumed. The C = 0 stability boundary of Fig. 6-13

is reproduced in Fig. 6-18, to which stability boundaries for three

values of structural damping are added. The sizeable increase in

flutter speed with

nature, and as w
o

g hints that the instability is not of sevp.re

becomes small the predominantly fore-and-aft bending
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motion is obviously very lightly damped. For small deflections with

structural damping included, there is a change in the flutter mode back

to the basic bending-torsion type encountered for zero steady lift. In

spite of structural dalnping's stabilizing influence, there still exist£

the possibility of a reduction in flutter speed at hi~h load fa~tor

Zlight conditions.

Root locus diagrams depicting the dynamic stability of the moderate-

and 1arge-asp~ct-ratio-wingexamples with steady deflections appear in

Figs. 6-19 and 6-20 respectively. Dashed lines in these figures show

the zero steady lift loci of roots for increasing speed, which are the

same as the zero drag diagrams of Figs. 6-4(c) and 6-4(g). Solid lines

trace the elastic modes for selected constant speeds JS the angle of

attack a is varied, and originate for a = 0 at nonlifting roots

corresponding to these speeds.

In addition to the normal modes of free vibration involving vertical

bending and torsion, previously seen on the iw axis in Figs. 6-4, the

first fore-and-aft bending mode natural frequency now also must be

included. This normal mode remains an uncoupled, undamped aeroe1astic

mode at all speeds at a = 0 , but a family of constant speed branches

emanates from this root with steady lift included. Since its natural

iw

of the lowest normal mode frequency.

larg~r than the first vertical bendingis a factor

w ,this new normal mode lies on thew
1

axis approximately at a mu1t:i~le IT

frequency w
VI

assumed mode frequency

This falls above the zero-lift flutter frequency for the moderate

aspect ratio wing, but less than it in the high-aspect-ratio example.
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A general feature of Fig. 6-19 and 6-20 is that as steady lift

increases from 2ero, one group of constant-speed branches tends to

stabilize and rapidly increase in frequency, whereas another lower

frequency family of root paths reduces in stability and decreases in

frequency. This latter group is responsible for t11e stability boundaries

of Figs. 6-7 and 6-13. In the high-aspect-ratio example, they originate

from the lowest chordwise bending normal mode, but fer the moderate­

aspect-~atio wing they originate on the zero-lift torsion branch of the

root locus. The constant-spe0d branches which originate on the first

and second vertical bending zero lift paths, for both examples, do not

show much sensitivity to steady deflections.

To illustrate more clearly the role played by the chordwise bending

upon stability, the 1arge-aspect-ratio example is modified by increasing

the bending-stiffness ratio T from 25 to 60. This raises the dimension­

less natural frequency of the first chordwise bendin~ mode from 0.5216

to 0.9629, which is greater than the zero lift bending-torsion flutter

frequency of 0.8921. The stability boundary calculated for this modified

example appears in Fig. 6-21 and the associated flutter modes are

presented in Figs. 6-22 and 6-23. The root locus obtained via the

Laplace transform method appears in Fig. 6-24(a) and the true stability

of constant-speed branches yielding instability is better depicted in

6-24(b) using the damping ratio ~.

The discontinuity in the stability boundary is only a consequence

of the solution procedure of Chapter IV and covers a region where solu­

tions that do exist could no~ be determined. It is due to an interaction

of the predominantly second bending, stable aeroelastic mode with the
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roots that yield instability. nle si.mple harmonic solution method

involves fixing the angle of attack u aud ~earching for the neutrally

stable lifting condition whose speed matches the calculated flutter

speed. In Fig. 6-21, the gap in the c~rve falls between points found

for a .0095 and .01 rad.

For all points on the left segment of the stability boundary. the

simple harmonic solution yielded an addition:!1 highly damped eigenvalue

whose frequency was slightly below the flutter frequency. On the rijitht

portion its frequency was above the flutter frequency. From the root-

locus diagram (Fig. 6-24(a) this hi~hly damped eigenvalue can be

identified as the predominantly second vertical bending aeroelasti.c

mode. and the discontinuous behavior in Fig. 6-21 coincides with the

crossing of frequencies as the downward moving constant speed loci

associated with flutter pass the stable second bending aeroelastic mode

frequency. By correla~lon with the gection VI-A discussion of the effect

of P and C on flutter. the general effect of the second bending mode

appears to be destabilizing when its frequency is just below that of

flutter. and stabilizing when its frequency is jU8t above.

The flutter mode shapes (Fig. 6-22. 6-23) reflect an interesting

transition as flutter frequency drops below the second bendin~ aero-

elastic mode frequency for increasin~ w
o

To the left of the

discontinuity the mode shapes resemble the zero-lift large-aspect-ratio

flutter behavior, to which they conver3e as 0.-+0. For larger w
o

though. the modes closely resemble flu::ter mode shapes for the T 25

case (Figs. 6-14, 6-15) which in turn resemble mode shapes for the

moderate-aspect-ratio example. This sitlilarity is most evident in qw
2

and q,j, •
'+12
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In Fig. 6-25 the flutter mode Sha?2S aTe diagrammed ~OT two liftin~

conditions ta ~ssist physical visualization of the motion. The lar~er

steady deflection illustration is similar to those given in Fig. 6-16.

But the smaller steady deformation mode shape. with its lar~e contribu­

tion by the second assumed b~ndinp. mode, has the win~tip rotatin~ in a

clockwise direction about its elliptical ?ath for a counterclockwise

motion at midsemispan. In spite of the relatively small steady deflec­

tion (a deflection of 1.226 semichords at the wingtip for a semispan of

roughly 19 semichords) the motion is quite three-dimensional. indicati~g

a significant iner~ial contribution to flutter in fore-and-aft bending.

The three root-locus diagrams (Figs. 6-19. 6-20. and 6-24) exhibit

the basic effect which steady deflections have upon dynamic stability

when incompressible strip-theory airloads are used. The basic zero­

steady-lift bending-torsion flutter root together with the first fore­

and-aft assumed mode produce a pair of constant-speed branches, one of

which rapidly stabilizes and increases in frequency while the other

decreases in ~requency and becomes unstable for speeds below the a = 0

flutter speed. These latter aeroelastic modes are lightly damped, Hnd

generally the onset of flutter at constant speed for increasing steady

deflections would not be as severe as for that encountered with increasing

speed. The reduction of flutter speed with steady deformations has been

noted to be greatest when the first fore-and-aft natural frequency is

near to the basic bending-,-orsion flutter f1.zquE::l.cy.

A better comprehension of the various aeroelastic modes comes from

inspecting mode shapes at both subcritical and supercritical conditions.

In Fig. 6-26. mode shapes for selected points along the U = 6 and 7
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branches in Fig. 6-19. the moderate-aspect-r3tio example. are shown in

phasor form. Likewise for the high-asp~ct-ratio win~ having T '" 60 •

Fig. 6-27 presents mode shape~ for certain steady deflections a1cng the

U = 6 and 7 paths froID Fig. 6-14. Thede mode shapes disclose that

the branches which stabilize and im:rease in frequency consist iar~ely

of motion in the first assumed torsion mode. having a small

of

M'de shapes (Fig. 6-27) for theaxis.

qv
I

and ~ive the previously shown flutter mode

iw

q~
1

The branches producin~ instabilities. furthermore,. lu'\ve

qv
1

contribution lock~d in a characteristic phase r~lationship with

nearly in phase with q~.

- .L

shapes as they cross the

near 180°.

essentially second bending aeroelastic modes show the dominance of the

second assumed vertical bending mode in this branch. which remain nea~ly

fixed in the complex plane at a frequency close to the second assumed

bending mode natural frequency.

The role of the bending-stiffness ratio T in flutter of lifting

wings is next examined. Figures 6-28 and 6-29 give flutter speeds and

frequencies found for the sam~ moderate-aspect-ratio example used earlier

compared with solutions for different values of T. For T 12 the

dimensionless natural frequency of the first chordwise bending mode is

0.86124. which is only slightly higher than the zero-lift flutter

frequency of 0.8332. and its stability boundary shows the most marked

decrease in flutter speed as w
o

increases from zero. The other

extreme. T '" 1000 , has a dimensionless natural frequency in chordwise

bending of 7.862. yet some decrease in flutter ~peed still occurs.

Elastic deformation in bendin~ about the major principal axis of the

airfoil cross section should be virtually suppressed and all fore-and-aft
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motion connected with vertical bending-torsion elastic coupling. Calcu-

lations are impractical for larger T since numeric.ll problems begin

to appear, such as convergence difficulties with the nonlinear steady

deflection iterative solution.

The uniform decrease in flutter frequencies as 7 is decreased

reflects the additional inertia from the larger fore-and-aft motions

brought about by the reduced elastic stiffness in bending ahout the

airfoil major principal axis. Decreasing flutter frequencies for

increasing steady deformations likewise should be due in part to the

, although the incr~a£e in the relative

participation of qw
1

In Fig. 6-30 the stability boundaries shown earlier for th~ large-

increasing contribution of qv
1

is also a factor.

aspect-ratio example with T ~ 25 and 60 are compare~ ~lon~ with

curves having T = 10, 40, and 200. The app~arance is complicated by

the interaction of the flutter modes with the predominantly second

vertical bending aeroelastic mode as discussed earlier. and by fore-and-

aft bending natural frequencies sufficiently low to cause convergence

as C. -+ 0 to speeds b/;;low the true nonlifting flutter speed.

For both T = 200 and 60 the flutter frequencies descend through

the range of the second vertical bending mode frequency as w
o

is

increased. causing the discontinuous stability boundaries. The flutter

frequencies (Fig. 6-31) reflect the role of this second bending mode.

whose dimensionless natural frequency is 0.77904 and (as already shown)

a stable aeroelastic mode with approximately this frequency exists at

flutter. As mentioned in discussing the T = 60 results. these curves

ure actually continuous. but the simple harmonic solution procedure

could not produce rp.sults within the ~aps.
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For the T = 40 , 25 , and 10 cases, stability boundaries conver~e

to free vibration in the first fore-and-aft mode as a ~ 0 ; th~ir

frequency curves conver~e to the respective natural frequencies of this

~de. In the c~se T = 40 , this frequency is 0.7802, quite close to

the secon~ vertical bending assumed mode natural frequency 0.77904.

This nedr resonance caused difficulty in preciselv locatin~ the neutral

s,t<1.-bilit:~, curves for sm.-lll we' as the dampinJ,':_ became extremelv small;

of course this troubl~ is unimportant since even sm~ll stru~tu~al dampin~

would raise rlutter speeds considerably here.

The sti ffness in chordwisc 'benclin~ is thus a f.actor in the flutter

of lifting cantilever ....ings. Although stability io:. mOf.. t adven~ely

near the zero-lift flutter frequency, this effectaffected for w
VI

appears over a wide ran~c of r • Hi~her-aspect-rat:io-win~s apparentl"

experience a ~reat€'r decre;lse in flutter speed with steady deformation.;,

flutter frequenc!.C'l = 0is. ~ufficientlv near the0.'

VI
The mass ratio N is the only parnmeter which can chan~e for a

given that

specific wing, as it depends upcn altitude. In Fi~. 6-32 the dependence

of both flutter and divergence speed:' on ~I for the rnoderate-.-.spect-

ratio example appears for the complete rnn~c of masS ratios of practical

interest. Divergence speeds for several values of steady dra~ t~gether

with zero-Ii ft flutter speeds for C = 0 .1nd 0.01 are compared. In

addition zero drag flutter speeds for steady lift ~ivin~

I , J

are shown for ~I 10 • 40 • ~nd 100 _ This same info~~tion is
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depicted in Fig. 6-33 for the large-aspect-ratio example except wingtip

deflections of 2 and 4 semichords are ~sen.

Divergence speeds for all drag values vary exactly as 1M. AR can

be seen. from the (averge.,.~e determinant (2-29), where N appears only

as a product with the inversE square of divergence speed. The C = 0

divergenc.e speeds for these two examples 3re identi.cal. but Un dccrc3f;0s

more rapidly with C for the higher aspect ratio.

For mass ratios above about 5. nooHfting flutter speeds behnve

npproximately as..IM f\ minimum in flutter speed is found ne3r H = 5 •

whtth a rapid asymptotic rise to infinity following a further decrease

in H This reflects well known results fot' incompressible flow (Ref. 5.

page 247). A practical appliCAtion for mass Totios sufficientl~ Rmolt

to be theoretically free from flutter is the stability of hydrllfoil s

used in high-speed marine transportation. Dive.rgenl'e waul ri he the type

of instability encountered. This conclusion emphasizes the Importance

of allmdng for steady dra~ since its effl'ct 011 divergence is propor­

tionally the same for any mass ratio and the decre~s(' of divergence speed

with C can be considerable.

Divergence is more in~ortant relHtive to flutter for mass ratios

around 10 than for higher mass ratios; this indIcates 11 greatel" lIkelIhood

of light aircraft and sailplanes expcLicnd.np, divergence. Crlll'lllation

of divergence speeds for A high-performance sailpl.ane I1ppenrs as 11 likely

application in \vhich nl10wnnce for steady dr~,g effects "'(ltil d be desi renhlp.

1he effect of steady deformation on flutter appears inB~nsitlve to

N. For equal tip deflections. U
F

reduces hy about the 8nm~ proportion

at each of the three mass rntios in the tlvo fir-lIrE's. Fo,' t1w hlgh-Ilspccl:­

ratio wing. these deflected flutter speeds correspond to the acroelastic

mode connected with chnrd\>.'Jse b(mdin~. as disc-uBsen for ~I '" 40 •
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The effect of changes in the remaining parameters A,S, and

has also been investigated for the steady deformed case, but no new

interesting behavior was found. Their influence at zero lift, as

i
CL

tabulated in Ref. 1, is carried over into the deflected flutter behavior.

Stability boundari.es and flutter mode shapes for increasing steady lift

show the same alterations of the basic flutter phenomenon as is demon-

strated by the examples used here.

To c1.;irify the strong influence which steady chordwise loads can

have upon divergence, particularly for high aspect ratios, the dependence

of Un upon C as aspect ratio parameter P is varied appears in

Fig. 6-34. The corresponding zero-lift flutter speeds for this

configuration (Fig. 6-1) can be compared directly. Unquestionably, for

higher aspect ratios (P $ 0.01) drag forces typically encountered in

flight (i.e., C = 0.0025) can cause divergence to become no less

important for flight safety than primary bending-torsion flutter.

C. Effect of Unsteady Leading-Edge Suction Forces from Two Dimensional
Incompressible Flow

Substituting the terms in (5-20) for their counterparts in the aero-

dynamic matrix (5-3) allows inclusion of the linearized unsteady chord-

wise forces arising from incompressible potential strip theory as

described in Chapte~ V. This effect is present only for ~ +0 and

will grow as angle of attack is increased. The initial trend of stability

as CL increases from zero should be unchanged from the results already

discussed, but at higher steady lifting conditions leading edge suction

should have a noticeable influence.
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Figure 6-35 displays how allowance for the linearized unsteady

propulsive force affects the destabilizing, constant speed, increasing

steady lift branches of the root locus in Fig. 6-19. which is the

moderate-aspect-ratio-wing example. For this case a tip deflection of

just one semichord is. a very larg~ deformation assuming a conventional

bending-to-torsion stiffness ratio Elx/Gld , since the semispan would

be about 9 semichords. Thus larger deflections shown are only of

academic interest, since they exceed in practice the limits imposed by

several underlying assumptions.

Figure 6-36 recasts the Fig. 6-35 information iIlto a better form

for inferring stability; the damping ratio of the same root branches is

plotted for wingtip deflection. Staui1ity is slightly increased when

leading-edge suction is added, but for practical deformations its effect

is really not too significant. A stability characteristic of deformed

wings, also evident in the format of Fig. 6-36, is the reduced severity

of flutter onset with increasing speed at constant Wo for higher load

factors.

Figure 6-37 gives the manner in which the root locus for the high­

aspect-ratio example (Figure 6-20) is altered b~' allowing for linearized

unsteady suction forces. Shown is the destabilizing family of constant­

speed branches associated with the first fore-and-aft bending normal

~ode. Again true stability with steady win~tip deflection is also

shown (Fig. 6-38). Also added are the constant-speed branches which

stabilize and increase in frequency as steady defonnations increase.

Once again the unsteady suction force has a slightly ~tabilizing

influence. Given the same ratio Elx/Gld , this ~xample has twice the
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span in semichords of that for the moderate-aspe~t-ratioexample, hence

las:get: wingtip deflections in semichords can be tolerated. After

allowing for this factor. the unsteady chordwise potential forces do

not appear to have any greater influence on stability for the lar~er

aspect ratio.

Figure 6-39 shows how stability of the modified high-aspect-ratio

example (having T = 60 , presented in Fig. 6-24) depends on steady

deformations and on the linea,ized unsteady propulsive force. Comparison

with Fig. 6-38 shows a similar effect due to leading-edge suction, but

steady deformations definitely have a stronger and more immediate

destabilizing effect for the stiffer chordwise bending case. This is

due to the proximity of the fore-and-aft bending normal mode frequency

to the zero-lift bending-torsion flutter frequency.

Inclusion of the linearized unsteady leadin~-edge suction terms

derived in Section D of Chapter V is thus found to be stabilizing for

deformed wings. Aeroelastic modes involving a primary contribution by

the first chorciwisebending mode appear to be most affE'cted by these

terms. With their incl~sion, potential flow strip theory has been

fuUy exploited for this problem, and further improvement in the aero­

dynamics involves the compressible three-dimensional loads of Chapter

VII.

D. Two Practical Examples

The manner in which chordwise forces and steady deformations

influence the aeroelastic stability of cantilever wings has thus far

been il~ustrated by means of idealized examples. After one has identi­

fied the fundamental effects, it is instructive to apply the same
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solution techniques to typical designs. Sailplanes, having large

aspect ratios, low mass ratio, and lov operating speeds (which pe~~it

the use of incompressible aerodynamics), are a logical choice for

practical examples. Accordingly, two existing sailplanes are modeled

within the approximations imposed by the assumption of uniform spanwise

mass and stiffness properties and strip theory airloads. Their stability

is studied using the same techniques applied before.

The first example is modeled from information given about the

Slingsby Dart 17R in Ref. 15, as summarized in Table 6.1. The approach

taken in determining the Wing stiffnesses, in lieu of looking at wing

construction details, was to use photographs in Ref. 15, from which tip

deflection and twist at a load factor of 4 could be measured. The

stiffness EI so obtained is clearly larger than would be expectedx

for the weight and type of construction; this inaccuracy is due to the

uniform stiffness restriction, the r~ctangular planform, and strip theory

steady airloads. The torsion stiffness GId is more reasonable. The

ra;,;i!)

EI
x 4,41GI
d

=

turns out impractically large. This number leads to a larger value of

P than would be expected, which causes bending natural frequencies to

be larger relative to torsion natural frequencies than would probably

occur on the actual vehicle. It can be added that, had GId been

increased to compensate for the seemingly excessive EI , then the
x

flutter speeds would have been absurdly high. Since wing construction

details were not available, typical values fo!' the parameters A " S,

i a ' and T were simply assigned.
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A different philosophy was applied when modelling the second

vehicle, the Gemini two-place high performance sailplane detailed in

Ref. 16. With construction details of the metal winR structure described

in Ref. 16. it was possible to assign reasonably accurate values to all

six of the dimensionless parameters from a diagram of the average wing

cross section (Fig. 6-40). The pertinent details of modeling the

Gemini are listed in Table 6-2.

One notable result is a much lower bending stiffness EI thanx

for the Dart 17R. This result will c.ompromise the static deflection-

load factor relationship but should favor the dynamic modeling. The

considerable differertce in bending stiffnesses between the two examples

is revealed in Fig. 6-41, which shows how the true load factor (found

using the respective aircraft gross weights) varies with steady vertical

tip deflection at speeds near the expected flutter speeds. The poor

static modeling of the Gemini should not adversely affect its flutter

results, however, tip deflection rather than load factor should be used

to measure the amount of steady lift.

The mass per unit span of the Gemini wing was taken to be the

average for the outer two-thirds of the semispan. so as better to model

it dynamically. The mass ratio-- over twice that for the Dart l7R--

reflects the heavier construction needed for a two-place vehicle and

the smaller average semichord. This design (Ref. 16) intentionally

has a higher wing loading to optimze the glide slope. with thermalling

performance improved using full-span flaps. The chordwise bending

stiffness was conservatively estimated yet still yielded a quite low

value of T = 5. The low Elx/GId ratio, together w1.th the very large
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aspect ratio, result in the extremely small P = 0.00128. This wing

thus is an extreme case in the context of the~xamp1es studied earlier.

The effect of steady drag on divergence speeds and non1ifting

flutter speeds is shown in Fig. 6-42 for the Dart 17R example and in

Yig. 6-43 for the Gemini. For both, the divergence speed drops below

the zero lift flutter speed at drag values which can be realistically

expected in flight. The excesHively large P of the Dart l7R model

moderates the drop in its divergence speed due to drag. For flutter

only a slight dependence of speed on C is found. On the Gemini, in

fact, the C = 0.02 flutter speed is only 0.28% less that for C = 0 .

Its larger S tends to lower the flutter speed relative to divergence.

Figure 6-44 depicts tr.e stability boundary as affected by steady

wingtip deflection for the Dart 17R. The associated flutter mode shape

aIllplitudes and phase relations appear in Figs. 6-45 (a), (b). The

coupling effect between the first fore-and-aft bending mode and the

primary zero-lift bending-torsion flutter mechanism appears to be

responsible for a decrease in flutter speed with lift, as in earlier

examples. The corresponding root locus diagram (Fig. 6-46) reveals that

the first chordwise bending natara1 frequency by coincidence happened

to fall almost exactly on the zero lift flutter frequency. This

phenomenon causes the pronounced drop in flutter speed for small def1ec-

tions seen in Fig. 6-44. Inclusion of the unsteady propulsive force is

slightly stabilizing at large deflections, as in previous cases.

A parallel analysis of the Gemini example, given by Figs. 6-47,

6-48, and 6-49, yields a very different response to steady deflections.

Flutte~ speed decreases only slightly at representative tip displace-

ments, and the mod~ shape contributions from
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almost no sensitivity to w The chordwise bending contributiono

suggests the cause. made clear in the root locus diagram. The combina-

tion of a very small P and small T produces a fundamental fore-and-aft

bending natural frequency which is much smaller relative to the zero

lift flutter frequency than in any example yet treated. Furthermore.

the second chordwise frequency drops to near the flutter frequency.

This second mode (rather than the fundamental) participates in flutter

of the deformed wing, yet it is not as strongly coupled elastically with

the first vertical bending and torsion modes. The aeroelastic-mode

branches associated with the first chordwise bendin~ mode no longer

play an important rule in stability with steady deformations. Indeed

it has degenerated into a virtually uncoupled. neutrally damped fore-and­

aft vibration. The linearized effect of unsteady leading-edge suction

on this type of flutter is negligible.

Evidently. for extreme cases such as the Gemini model with a fore-

and-aft bending frequency much lower than the zero-lift bending-torsion

flutter frequ~ncy, the lowest chordwise mod~ will not participate strongly

in flutter. The low-frequency root brallches associated with it give no

cause for concern. Before this calculation is accepted as a definitive

flutter analysis of an existing sailplane, however, the cantilever root

boundary conditions must especially be recalled. While these results

do offer insight into symmetric flutter of the actual vehicle, the

possibility of anti-symmetric motions involving fuselage roll and yaw

is entirely suppressed. For the Gemini in particular, there remains

the likelihood that anti-symmetric vertical and fore-and-aft bending

modes may couple to produce a different type of flutter-- possibly one
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with a greater sensitivity to ~teady deformations. Although the results

here are insensitive to both steady deflections and to chordwise forces,

steady drag unquesciunably plays a critical part in divergence.
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l---OART 17R SPECIFICATIO~ (REF. 15):

SPAN

AREA

ASPECT RATIO

GROSS WEIGHT

ASSUMPTIONS:

WING WEIGHT

AVG. SEMICHORD

55.8 ft.

149 ft
2

20.9

800 lb.

200 Ib ...>

1.33 ft.

'"' 0 1242 slug .
m. ft.

FROM REF. 15 PHOTOGRAPHS:

(wo)TI~ '"' 3 ft. at 4g ~> EIx ~ 1.500.000 Ib ft
2

(~o)TIP = 1.5 0
at 4g => Gld : 340,000 Ib ft

2

FROM THIS INFORMATION ONE CAN SPECIFY

p ::: 0.01

ASSUME THE REMAINING P~~TERS

i = 0.25ex

A .. 0.1

M ::: 9.4 (sea level)

S "" 0.1

T "" 25.

EXPRESS SPEED V IN FT.!SEC. IN TERMS OF U

U = ~ ;!ci
d

V "" 0.008432 V

LOAD FACTOR AT SEA LEVEL:

N
.. 4ITpV2U n 2 1

W (a + E IT (2j-l) q; )
j=l j

TABLE 6.1 Modeling of the Dart 17R Wing
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GEMINI SPECIFICATIONS (REF. 16)

SPAN

AREA

ASPECT RATIO

GROSS WEIGHT

TOTAL WING WEIGHT

WEIGHT OF OUTER
20 FT.

ASSUME b = 1.00 ft.

60.5 ft.

124 ft
2

29.4

1065 lb.

400 lb.

110 lb. => m = 0.1708 Gi~~

PROPERTIES EST~-ATED FROM THE TYPICAL SECTION (Fig. 6-40)

EI 444,900 lb-ft2
x

GI
d

402,400 1b-ft2

EI 2,179,000 1b-ft2z

J 0.04697 slug-ft.

a -0.4

s 1m 0.2322 ft.
e

RESULTING DIMENSIONLESS PARAMETERS

M =: 22.9

p 0.00128

io. == 0.275

A = 0.1

S = 0.23

T = 5

EXPRESS SPEED V IN FT. I SEC. IN TERMS OF U

i.TJ
U = b I~ V = 0.010335 V

d

TABLE 6.2 Modeling of the Geminj Wing
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FICURE 6-3 Phasor Representation of Flutter Mode Bending Displacements
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Chapter VII

FLUTTER VELOCITY USING AIRLOADS FROM THREE-DIMENSIOriiAL
SUBSONIC AERODYNAMIC THEORY

A. Inclusion of Three-Dimensional Airloads

The influence of steady deformations and chordwise forces upon

dynamic stability of the uniform cantilever Willg has been examined in

Chapter VI using lifting airloads predicted by incompressible steady

and unsteady strip-theory. This approximate modeling

of the aerodynamic loads made possible their convenient numerical compu-

tation for any convergent, neutral, or divergent oscillations of interest.

As a result, the iterative solution schemes of Chapters IV and V could

be developed and a variety of wing configurations could be analyzed

efficiently.

The accuracy with which the incompressible strip theory results

approximate the three-dimensional compressible flow situation is next

explored by extsnsion to subsonic three-dimensional lifting airloads.

TIle simple harmonic flutter solution method described in Chapter IV is

accordingly modified to use subsonic three-dimensional steady and

oscillating unsteady aerodynamic loads calculated separately by the

computer program written by Rowe, et a1. (Ref. 18). Results are then

found which demonstrate that the phenomena discussed in Chapter VI

still occur after three-dimensional aerodynamics are introduced. The

role of unsteady potential chord~rise loads in flutter is investigated

as is the effect of cOT'ip:ressibility. Since the use of externally

computed air loads requires a more cumbersome solution method, only

enough results are sought to prov.lde direct comparison with the incompres-

sible strip-theory calculations.
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The Rowe comput~r program solves the pressure-downwash integral

equation (Ref. 24) for compressible flow about a steady or oscillating

planform. The kinematic downwash boundary condition for each structural

mode is enforced by collocation, at a set of user-specified points, of

the downwash distributions associated with an assumed series of pressure

functions. ~or this application seven collocation chords are specified

having five collocation points per chord. Six elastic structural modes

are input-- three in vertical bending and three in torsion. The three

torsion modes are defined for A =.1 (later~l displacements depend on

elastic axis location). A thorough descrf.ption of the theoretical

aspects of the subsonic kernel function program is provided in Ref. 18,

and the programming details are documented in Ref. 19. Its capability

for modeling trailing- and leading-edge control surfaces is not required

in the present application.

The unsteady potential chordwise forces can be deduced from program

output, as follows. For each structural mode and its downwash the

program calculates the complex amplitu~e of an associated distributed

lifting pressure difference on the rectangular planform, which in

dimensionless form for the jth mode is, per unit qj having steady or

simple harmonic time dependence,

(7-1) LlCp. (x,y)
J

LlP.(x,y)
J

Here
(")

a J are coefficient multipliers of the series expansion of
\llJ

pressur~ on the planform, which can be listed in the program output.

The assumed spanwise pressure distributions are
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(7-2) sin(2v-l)41
sin4l

, v - l,2,3, ...N

•
(7-3)

N .. number of downwash chords on sem!span

The assumed chordwise pressure distributions, dependent upon x only

for a rectangular p1anform, are

(7-4)
(" \

g'''''(x) u .. 1

U 2,3,4, ...M

(7-5) El = cos-1 (_ ~)

M number of downwash points on a downwash chord

where x is measured aft from the midchord.

The resultant chordwise component of potential airloads, acting

in the positive x direction, can be expressed as

(7-6) D (y; t)
P

az
- ~pV2 f_~ ~Cp(x.y;t) ~: (x,y;t)dx - Fs(y;t)

The first term represents the x-component of the force, which is normal

to the deflected chord. second term contains the contribution of l~ading-

edge suction. It is an idealization of linearized theory. which is

supposed to approximate the actual effects of low pressure actin~ around

a curved leading ed~e.

Steady and unsteady parts of the pressure and mean-surface chordwise

slope can be separated:
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(7-7)

(7-8)

~c (x,y;t) ~C (x,y) + ~C (x,y;t)
P Po PI

dZ s
~(X,y;t) = - ~O(y) - ~l(y;t)

The first term of (7-6) will then contain a steady part, a linear

unsteady part, and a nonlinear part, as follows:

(7-9) D (y; t)
p

The suction force likewise can be separated. The leading-edge inverse-

square-root pressure singularity strengths f0L steady and unsteady flow

can be defined,

(7-10)

(7-11)

CF (y) :: *lim [-/X+b Ac (x,y);
a x+-b Po

C_ (y;t) :: X lim [- lX+b ~C (x,y;t)]
1'1 . 4 x+-b PI

From equations (5-9) and (5-10), the leading edge suction force in

terms of the vorticity singularity is

(7-12) 11_M2 ~ p[ lim (/x+b y(x,y;t»]2
a x+-b

where the effect of compressibility is now included with the {1-M2
a

factor (deduced from Eq. 12-1 of Ref. 16). Vorticity and pressure dis-

continuity distributions in the vicinity of the leading edge are related
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by (Ref. 23, Eq. (5-93»

(7-13) l1C (x,y;t)
P

2y
= - V-(x,y; t)

The suction force in terms of the leading edge pressure sin~u1arity

is, therefore,

(7-14 ) F (y;t)
s

r--;; V ''---'- 2v1-M2 ITp{- lim [- ~X+b l1c (x,y;t)]}
a 4 x+-b P

where (7-7), (7-10), and (7-11) have been used. Equations (7-9) and

(7-14) suggest that chordwise forces do affect both the steady displace-

ment solution and the linearized unsteady stability problem.

Actual computation of the suction force contributions can be

Ilccomp1ished through program output of the series coefficients

Insertion of (7-1) into (7-10) and (7-11), for the jth mode, leads to

the steady and unsteady leading-edge singularity strengths

(7-15)

(7-16)

Here, in taking the limit x ~ -b , only the ~

distribution terms from (7-4) remain since
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(7-17) 1J .. 1

1J > 1

The single summations that define the modal spanwise leading-edge

pres:;ure singularity strength can be arranged for computational purposes

(7-un ~N
-x.- E

\)=1

(7-19)

This notation, together with summation over all modes, allows the total

singularity strengths (7-10) and (7-11) to be computed by

(7-20)

(7-21) C
F

(y,t)
1

- 2vlb E Fj(y) qj(t)
j ,

Insertion of (7-20) and (7-21) into (7-14) gives for the suction force

(7-22)

The notation of (7-18) and (7-19) is next adjusted to identify the

specific structural modes involvE:d. For the steady problem a rigid

pitching mode must be used to solve for pressures and loads due to
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airplane angle of attack, and its associated singulari.ty strength

parameter is denoted as fO For the jth elastic torsion mode FO

~ . ~

is used; of course, the vertical bending modes introduce no steady

lifting loads. Unsteady, 1eadit1g-edge-~ingu1aritystrength parameters

for the jth elastic torsiau and bending modes are specified by

and F . respectively.
w

j

FIj>
.i

The computational form of (7-22) is then

(7-23) F (y; t)
s

n n
+ 2 [ [Fo~ + I FO q:]F

j=l ~ v=l lflv ~v wj

'!'he x-component of the ~Cp·-force, as indicated in (7-9), must also

be expressed in a form which permits computation. Insertion of the

modal quantities

n
(7-24) cjlo I fcjl qO

v:\ V ¢>v

n
(7-25) t.CPo ~Cp ~ + [

0 qO~CP4l
~ v=l 4l""

(7-26)

(7-27) uCp, .....
n
r

j=l

QIn
. + r 6Cp,j, q...
b j=l ~j 'f'j
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into (7-9) leads to

(7-28) D (y;t)
P

n n b n n Clw i+ E E f_b L'lCp; f¢l dx qO qO ] + [E E t
b

L'lCpw flj) dx q~
\.1=1 epll lj)'I) b'1)"'1 II 'I) i=l '1)"1 i \I \I

n n b
+ r E f L. t.Cp~ f(j) dx qO q<l>

i=l \)'"'1 -'; i \i <1>\1 i

n n b tlw
i+ [ E E J b 6.Cp f¢ dx b q4>

i=l j=l - wi j j

n n b ] 2iwt+ E E -':b L'lCp ep fep dx qljl ql/l e - F (y't)
i"'1 j=l i j i .1 s •

where steady, linear unsteady, and nonlinear unsteady terms in the

generalized displacements are grouped togeth~r.

The chordwi~e integrals in (7-28) involving the steady and unsteady

modal pressures can be computed at any spanwise station by takinp.

advanta~e of the Rowe program's capability to compute sectional ~eneral-

i.zed forces. Program output is of the form

(7-29) ~j (y)

where the deflection mode shape Hi(x.y) for all integrals in (7-28)

will be fep (y) .
i

The nonli~eat" modal equations (4-9) for st~ady displacements must

be modified by.3ubstitution of the steady compressible liftin~ airloads

in place of the ~trip theory loads (4-3), Inclusion of the steady

212



parts of (7-28) and (7-23) will account for the induced draR caused by

the three-dimensionality of the flow. Generalized forces which will

appear in equations (4-9a) and (4-9c) are to be computed directly, but

the generalized forces for the chordwise bending eouations (4-9b)

involve the chordwise forces described above and must be calculated

separately. These preliminary calculations require the pressure

coefficients a~~) and sectional generalized forces obtained

from Rowe program output. Program output of generalized forces is of

the form

(7-30)

where Hi(x,y) is the ith modal displacement and 6CPj
(x,y) the

pressure distribution per unit q .•
J

Rederivation of (4-9) with three-dimensional subsonic steadv air-

loads produces the following nonlinear systenl:

° qO
MPi qw MPi n n v

(7-31a) rr~N" ex .....::.i (T-l)
Q,

[ L E H 0° -2.---ur- b
- tjT""j

j.J=1 \1=1 \ljU lP\I b

n n n
qO

n
~ r. E R 0 qO

Wi b [nil + E Q; v+2nQ; 1 0
ijlJ\lqcPj.J

-1 - 2n~ -:i ex
~=l \1=1 1"'1 $',) b . ,0 v=l . , '.'
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TMP1u. q;j MPi n n ~
(7-31c) rr"N" (T-l) a [ r r li qO U

j --ur- b - ~
v-l \.1"1 \I\lj 4l" b

n n n
q"

+ L L r R qO qO
vi

\)"1 \.1=1 i-I ijuv <flv <flu b

n_ _
1 ~ f~ b 0... [f t.Cp dx] f,., (y)f (y)dy qO (1

:ml1. \,....1 0 -b CL 'l'v v j 4l"

1 It n ~ b Q

- 2n~ r I f [-C.b llCprp (x. y)dx]f4l (y)fv (y)dy q$
).1'''1 \>=1 0 U v j U

(1 ~ j ~ n)

+ 4/1-M2 {f~(FQ)2f dv + 2 ~ ft FV FO f dv C1 qQ
o CL '1'.1 - \>=1 0 a 4>v v j . 4>v

Mi MPi n n
~rr2(j_~)2 U2~ q; + (T-l) U2CL (L L

j v~l 1-I m l
(73lc)

n n n
Err

\>"'1 U=1 i'...1

n
b [00 a + t o' qO ] - 0

- 2II~ -j+2n.o ,,-I -.i+2n. v+2n til"

In (7-31) the notation refers to the steady Iteneralized forces

computed directly by the Rowe program. Here 2n+1 structural modes

must be used to compute generalized forces: n in vertical bendin~. n

in elastic torsion, and one ri~id pitchin~ mode.

Computation of the chordwise load terms in (7-3lb) quickly becomes

an unwieldy task as n is increased, be~ause of the profusion of

numerical integrations that be~ome necessary (for n - 3 there would

be 75 integrations). In order to avoid ext~nsive labor but still retain
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the most significant effects of the potential chordwise forces, the

following simplifying assumptions are adopted. First, integrals

appearing in the first (j=l) chordwise equation of (7-31b) only are

retained. Second, only the pressure distribution and slope of the first

of the elastic torsion modes are kept; terms containing hCp; or f~

~ ~

for ~ > 1 are dropped. Similarly, all terms containing F; for
u

U > 1 are removed. This approach should pTPserve the first-order

effect of steady chordYtse potential forces, yet only five numerical

spanwise integrations will be required.

Actual computation of the remaining integrals

is done by direct calculation of the integrals over x as sectional

generalized forces with the Rowe program at eleven spanwise stations.

The spanwise integration is then carried out numerically. For the

three integrals

fOi[F~(Y)12fVl(y}dy

fo
i F~(y)F: (y)fv (y)dy

'l'1 1

che s~tions implied by (7-18) are first made. This step is followed

by spanwise numerical integratim\.
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The nr:~linea.r. solution scheme described in Appendix C was straight-

forwardly adl.lpted to compute steady deflections in subsonic three-

dimensional flow from (7-31). Since spanwise induction introd~ces

coupling among the torsional modal equations, solution for linear dis-

placements as Rn in.Ltia! estimate becomes an men linear matrix problem.

Equation (4-12) remains as the 3n x 3n linear unsteady modal

system for stability about the steady equilibrium position. It now

requires the generalized force matrix to be expressed for three-dimen-

sio";;.l !.!!1l':teady c.ompressib1e flow. As for the steady case, the

generalized forces relating pressures and displacements in the vertical

bending and torsion modes can be computed directly by the Rowe program,

with reduced frequen~y and Mach number specified. Direct insertion into

(4-12a) and (4-l2c) is accomplished by the simple substitution, for

generalized forces and relating the same two modes,

(7-32)

involves spanwise integrations of the terms' products with

Even more so than for the steady airloads, complete inclusion of

all linear unsteady potential chcrdwise terms introduces a profusion

of integrals. Formally, the linear unsteady terms which appear in

(7·-28) and (7-23) enter into genaralized forces, computation of which

f
v.1

Practically, simplifying assumption~ of the type made for the steady

chordwise terms have been made to keep the number of numerical int~gra-

tions at a manageable level. Accordingly, only the first chordwise

equation of (4-l2b) will retain the chordw:Lse force terms. Furthermore,

only the chordwise force integrals containing pressure contributions
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and displacements for the q~ • q • and q degrees of freedom will
'1'1 wi w2

be kept. (Justification of this approximation is based on the flutter

behavior observed in Chapte! VI, which revealed little participation by

the remaining vertical bendin~ aod torsion modes.) The remainin~ linear

unsteady terms from (7-23) and (7-28) are

(7-33) D (y; t) ;;;
p

f~ dx q; qro (~)}
1 1 1

~ (t)

+ FO F a-~
a Wz b

+ -C'b t.Cp~ f~l dx ex q~l (t) + f~b t.CP;l

qw (t)

+ 8ITpV2 /1-Mz {FO F a hI
a a WI

q (t)

+ fO F~ a q~ (t) + f; F qO WI
a 1 1 1 WI ~l b

qw (t)

+ fO f qO 2 + fO F¢ qO qll>,(t)}
~l Wz <PI b ll>l ll>l1 .l

The generalized force matrix terms for inclusion in (4-12b) are then

found to be

(7-34)

8b r.-7:T 9. Q.
- k 2n t<l-Ma {fa F()(y)F (y)f (y)dyex +! F: F f dy qO }

J(, a WI VI a 'i'l WI VI <PI
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(7-34)
con't

- k8~ n /l-~ {fot Fa,° F", f dy a, + f.t F: F", f dy q1 }
x. '1'1 vI 0 '1'1 '1'1 v l '1'1

All remaining Qj+n,i terms in (4-l2b) will be r.ero.

For a given reduced frequency, computation of these generalized

forces involves program output for both oscillating and ~teady flow

conditions. Sectional generalized forces and pressure series coef-

ficients output by the Rowe program are used, in the same manner

described above for steady chordwise loads, to compute (7-34). Integrals

for oscillating flow, of course, are complex. Nine complex spanwise

numerical integrations are needed for each k, whereas 126 would have

been required without the simplifying approximations. Two real inte~ra-

tions in Q1+n,1+2n involving steady pressures also appear in the

steady displacement solution.

B. Flutter Calculation Procedure and Results

Inclusion of subsonic three-dimensional (3-D) airloads eliminates

a serious flaw of the strip theory loads used to obtain all Chapter VI

results. This was the approximate sllanwise load distribution. which is
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most inaccurate near the tip. Leading-edge suction has been included

in the same manner as the Chapter V. Section D, analysis of 2-D flow.

An effect which was ne~lected in the strip theory case. that of the

x-component of the resultant pressure force normal to the deformed

chord (cf. Eqs. (5-18) to (5-20) is now retained. It is accounted for

by the chordwise terms which are computad with sectional generalized

forces. The influence of induced drag upon both steady deformations

and flutter stability should now be implicitly included by the modelinR

of chordwise loads. Two parameters which must be specified in addition

to those mentioned in Chapter IV, in order to define a specific wing

~are the aspect ratio (b) and Mach number.

The Chapter IV stability calculation method has been modified to

accept the subsonic 3-D steady and unsteady airloads derived in Section

A. Since these airloads are now externally generated. iteration of the

reduced frequency to find neutrally damped eigenvalues is no longer

feasible. Generalized forces have to be computed beforeh~nd, both for

steady flow and for oscillatory flow at preselected reduced frequencies.

~omputation of steady displacements for a given an~le of attack and

flight speed is accomplished as before, now based on Equations (7-31).

Then for each of the preselected reduced frequencies, the previously

calculated generalized forces (7-32) and (7-34) are input. the ei~en-

value determinant (4-19) is assembled. and complex eigenvalues are

determined. For each of these there are an aS50ciated speed and damping

as shown by (2-25) and (2-27). The speed and dampin~ of each flutter

mode are theu plotted for all k, and a neutrally-damped speed U
F

is determined by graphical 1nterpo18_!:ion. The procedure is repeated
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with a newly estimated U ; with care,e U
e

and can be matched

with sufficient accuracy after two such steps.

The expeuse in computer time to execute the Rowe program and the

additional effort required to prepare the chordwise loads make it

desi.reable to use as few as possible k values. Fortunately, all U

vs. g interpolation graphs proved to be quite smooth. Flutter speeds

accurate to three significant digits (sufficient) were reliably obtained.

The moderate-aspect-ratio wing whose stability boundary for 2-D

airloads appears in Fig. 6-7 has been re-analyzed using 3-D incompres-

sib Ie aerodynamic theory. Figure 7-1 shows the results" compared with

the 2-D flutter calculations. The curve marked "100% ~luctiontl ,<laS

computed with the complete system (4-12), (7-32), and (7-34) whereas

that illarked "0% suction" was found by repeatin~ the .analysis after

removal of all terms containing the singularity strength parameters

F~ etc. in (7-34). This latter result thus represents the effects of
1

forces normal to the deflected airfoil chord only in the dynamic equa-

tions. The coupling of fore-and-aft bending motions into flutter by

the leading edge suction forces is therefore absent in the "0% suction"

case.

The 2-D stability boundary involves the aerodynamic loads of

(4-18), which actually do not account for suction. The effect of model-

ing the suction force, as derived in Section C of Chapter V, is shown

by Figs. 6-35 and 6-36. These plots suggest that, if a stability

boundary had been determined with suction accounted for, the 2-D curve

in Fig. 7-1 would show less influence of steady deformation and would

not drop below U = 7. The solid, 3-D curve does, of course, account

for suetion.
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Comparison betweeu the 2-D and 3-D flutter speeds is also made

more difficult because they involve different steady aerodynamics. In

order to minimize differences of this kind, the steady tip deflection

was judged to be the best common measure of steady airload effects.

Inspection of Fig. 7-1 affirms that the influence of steady

deformations upon flutter is not just governed by elastic bendin~-torsi0n

coupling but is also sensitive to the manner in which the potential

aerodynamic loads are applied to the fore-and-aft degree of freedom.

Even though the chordwise force components repres~nt tilting of a

~elatively large, approximately vertical resultant force vector, they

are seen to have a significant stabilizing influence. This conclusion

follows from comparing the "100% suction" and "0% sllction" curves. Any

analysis of this type will obviously be sensitive to the way in which

chordwise forces are accounted for.

The influence of compressibility is next explored by repeating the

foregoing calculations with airloads computed for Mach numbers of .6

and .8. Results are shown in Fig. 7-2. Strictly speaking, this

procedure involves an inconsistency, since Mach number is held fixed

while velocity is freely varied. The type of calculations required to

model properly a wing at high subsonic speeds would require iterative

matching of Mach number and speed UF for a given flight altitude.

This refinement is deemed to be excessively costly in both computer

time and effort. Nevertheless, the results of Fig. 7-2 provide inter­

esting qualitative information on Mach number effects.

is increased, the decrease in flutte~ speed with steadyAs M
a

deformation for the "0% suction" case becomes less pronounced. The
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results for "100% suction" show less sensitivity to Mach number. In

either case, no adverse effects due to compressibility upon flutter of

a lifting wir.g are revealed, other than those associated with a modest

decrease in UF with increasing Ma

When extending this analysis to higher subsonic Mach numbers, it

must be remembered that the only aerodynamic loads being included are

those which arise from inviscid, fir~t-order. small perturbation steady

and unsteady theory for planar lifting surfaces. Induced drag is presAnt,

as discussed above, but all chordwise forces which arise from either

direct viscous shears or from modifications to the pressure distribution

due to the presence of a boundary layer are not modeled. Yet viscous

effe:cts of this type become increasingly more pronounced as flight

speeds approach the transonic regime and/or as mean angle of attac.k is

increased.

The chordwise laods associated with direct viscous shear should not

contain a significant unsteady component, at least at the lower reduced

frequencies encountered here. It is expected that they will produce a

steady drag force aligned with the airfoil section. By contrast, the

chordwise potential ·loads represent the horizontal component of a

relatively large resultant circulatory lift vector. Tilting of this

vector can introduce unsteady chordwise loads of considerable magnitude.

Indeed their importance in aeroelastic stability is suggested by

comparison of the 100% and 0% suction curves in the figures.

Since viscous shear should cause a predominantly steady drag loading,

qualitative information regarding its effect on flutter can be inferred

from the strip theory studies of Chapter VI involving the drag parameter
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C. For example. no substantial alteration of the dependence of flutter

speed upon steady lift should be expected from includin~ this additional

drag term. The effect of unsteady viscous contributions to aeroelastic

stability has not been considered anywhere in this investigation. The

mere prediction of unsteady viscous chordwise loads is still regarded

as an open question for experimental and analytical research. especially

when turbulent boundary layers are involved.

As a final case. the large-aspect-ratio example of Fig. 6-13 has

been reanalyzed. Aspe~t ratio is fixed at 20 and Mach number at O.

Results are shown in Fig. 7-3. Interestingly. the zero-lift flutter

speeds for 2-D and 3-D flows are nearly the same; of course, strip

theory is expected to be more accurate for the larger aspect ratio.

The difference between the 2-D and 3-D (with suction) stability

boundaries is actually deceiving. since (as already mentioned) the 2-D

results do not contain the improved modeling of the suction force from

Chapter V. Figures (6-37) and (6-38) suggest the stabilizing effect

which introducing suction would have upon the 2-D curve in Fig. 7-3.

The key observation here is that the same type of instability, involvin~

substantial participation of the fore-and-aft bending degree of freedom

obaerved for 2-D aerodynamic loads. is still observed after 3-D aero­

dynamics are introduced. Also the influence of steady deformation upon

flutter speed remains appreciable. Removal of the unsteady suction

terms decreases stability, much as was observed for ~ = 10 in Fig. 7-1.

Points on the stability boundary for a < .005 could not be found

reliably because of the extremely light dampin~ in this region;

approxi~ate curves are shown by dashed lines.
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In conclusion, the results found in this chapter seem to confirm

that the phenomena analyzed extensively in Chapter VI are still observed

when the strip theory airloads are replaced by airloads from 3-D

aerodynamic theory. Furthermore, the role of chordwise forces due to

leading edge suction has been found to increase the aeroelastic stability

of a wing und~~going steady deformation due to lift.
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FIGURE 7-1 Flutter Speeds as Influenced by Steady Deformation,
Moderate-Aspect-Ratio Example of Fig. 6-7 with A\ = 10
and M = 0

a
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5. 100 % suction
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FIGURE 7-2 Flutter Speeds as Influenced by Steady Deformation at
Three Mach Numbers; Wing of Fig. 7-1
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from the variety of results

obtained in this investigation.

1) The influence of steady drag on flutter speed changes from favorable

to unfavorable as aspect ratio is increased. The frequency of the

second transverse bending mode decreases, tending toward the funda-

mental bending-torsion flutter frequency, as aspect ratio is

increased.

2) The prediction of the influence of steady drag upon flutter is not

substantially altered when steady defcrmations due to lift are

considered. The major effect of steady drag is to ~educe divergence

speed, especially for large aspect ratios.

3) When a wing has such a large aspect ratio that its fundamental

fore-and-aft bending frequency is less than the freqtlency of bending-

torsion f!~tter at zero steady lift,an instability associated with

chordwise bending OCC.lrs. The critical speeds are lower than the

zero-lift flutter speed when any steady lifting deformation is

present. This type of flutter can disappear at small steady deflec-

tions when realistic structural damping is introduced, but for

reasonably large displacements it can still occur.

4) Steady deformations decrease flutter speed and flutter frequency.

The effect is most pronounced when the fundamental fore-and-aft

bending frequency is near the zero-lift bending-torsion flutter

frequency.
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5) The aeroelasti~: l'henomena predicted using incoiilpressible strip-

theory airloa~5 are also observed when three-dimensional, compres-

sible subsonic atrloaDs are employed.

6) The inClusion of unsteady leadinJl:-edRe euction forces moderates

the predicted dec~ease in flutter speed due to steady liftin~

deformati,ons.

7) In subsonic compressible flow, with unsteady potential chordvig~

forces. there seem to be only slight adverse effects of

flutter when steady deformations are present.

on

One of the predictions of this study is that a high performance

sailplane undergoing a limit toad factor pullout from a dive could

encounter flutter or divergence at lower speeds than might be antici-

pated frem a conventional aerc)elastic anal:/sis. The increased steaoy

drag ...,hieh accompanies higher CL would reduce the diver~ence speed

considerably, while the deformation of the flexible high-aspect-~atio

wings would change the dynamic aeroelastic dtabUity as well.

The present analysis could be refined still further. Nonlinear

ae!'odynamic effects deserve further attention. Higher mean angles C'f

attack would lead to increased importance of the turbulent boundary

layer. culminating in separation (stall), which wi'.ll a1 te:- the stabiliz-

irog contribution found due to leadin~-edge suction in attached flm~.

Vehicles intende~ to cperate at the hi~her subsonic or low tran-

sonic speeds (certain RPV's OT missiles could still be d~signed with

the straight wings considered here) are expected to encounter various

phenomena which could greatly affect the chor~ise loads. Viscous
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shear. boundary layer modification of the flow, and thickness effects

with the appearance of shock~ will all modify the aeroelastic behavior.

Finally, ~he transonic and supersonic flow regimes, where drag

loads are considerably larger than at subcritical speeds. remain largely

uninvestigated. In these ranges different structural and aerodynamic

configurations are likely to be involved.
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Appendix A

THE ASSUMED MODES

1. Bending

The natural mode shapes and frequencies in bending of a uniform

beam of length £ are found by seeking homogeneous simple harmonic

solutions of

EI w.... + mW 0
x

Letting

w W e
iwt

the general solution is

where 2
a

EI
x=--m

Application of the bending boundary conditions

W(O) W' (0) W"(9.) W" (9.) a

results in a trancendental equation for the natural frequency eigenvalues

cos A£ = 1

cosh ... J!,
a

which are for vertical bending

(A-I) i
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The trancendental numbers Ni for 1 < i < 5 are

(A-2)

N1 = 0.596864162695

NZ = 1.494175614274

N
3
~ 2.500246946168

N4 3.499989319849

N5 4.500000461516

and the corresponding eignevectors yield the vertical bending natural

modes

(A-})

expressed in orthonormal form so that

J l f2 (-)d­
o w. y y

~

1

The modal property

the modal integral

B.
~

in the steady equations (4-9) is related to

(A-4)
1

fo f dy
Wi

Fore-and-aft bending natural modes

however the natural frequencies are

f are the same as in (A-3),
vi

(A-5) 221ffz Lw = II N tiT - = Y"T W
vi i g, m wi
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The f are illustrated in Fig. A-I for 1 < i < 5
wi

2. Torsion

Natural mode shapes and frequencies in torsion are simply

(A-6)

(A-7)

which result from the elementary Sturm-Liouville problem for torsion

of a uniform rod. These modes are not normalized since
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Appendix B

CALCULATION OF MODIFIED BESSEL FUNCTIONS

The modified Bessel functions Ko(S) and Kl(S) appear1n~ in

the expression (5-1) for the generalized Theodorsen function can be

computed by using the following ascendin~ power series expansions,

drawn from Abramowitz and Stegun (Ref. 26, Equations 9.6.10, 9.6.11,

and 9.6.13).

(B-1)
v 00 (ks2)j

(~s) I"
j=O j !f('J+j+1)

(B-2) K (s) - {.Q.n('-2s) + Y }I (8)
0 e 0

~s2 (!:iz2) 2
(1+1.:+t) (!:iz2) 3+"'(f'f)T+ (1~) ('2T)'"T""" + 2 (302 + ...

(B-3) K
1

(s) ~(~s)-l + ~ncl-s)Il (8)

00 (J..is2)j
- ~(~s) I {~(j + 1) + ~(j + 2)}

j=o
.1! (j+1) !

r(v + 1) = v!

~(1) = - Ye v-I
W(v) = - Y + L j-l

e j=l

y = 0.5772156649 ••.
e

v > 2

(euler's constant)

No convergence difficulties with the power series expansions were

encountered over the range of s that occurred i.n this investigation.
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Simple harmonic airloa~b involving the Theordorsen function of reduced

frequency C(k) were computed by the same procedure, simply by the

substitution s = 0 + ik •
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Appendix C

SOLUTION FOR NONLINEAR STEADY DISPLACEMENTS

With the vector of generalized disDlacements defined as

(C-I) { 0 0 ° ° ° ° }Tq ••••• 0 .q ,.q .q~ , .. ,q~
wI v n vI vn ~l ~n

the nonlinear equations (4-9) can be expressed.

(C-2)

where

(C-3)

o

Let an initial estimate ~(o) be found by solving the linear steady

equations (4-20), then linearize F about qO() by first-order Taylor
",., ..,.,0

series,

(C-4)

The Jacobian matrix. J contains partial derivat:f.ves of the F's with

resp~ct to the qO's evaluated at ~(o) ; its elements are shown in

Fig. C-I. Equation (C-4) can be used to solve for ~(l) - ~(O» by

the linear approximation

(C-S) o

and the first iteration solution is

(C-6)
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'[his process is repeated until satiafactory conveTgence is achieved,

'"ith the general jth step given by

(C-7)

In practice, more than four or five iterations rarely were required,

for cases near static divergence speeds.
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MP1 n n
(T-1) bU2ex r r RijllV q; q;

U=l v-I .. "\1 "'V

tlFW MP1
J - --::i - - --J!
j,i+n - tlq; - bU~

i

tlF
w

J =~=-
j, i+2n tlqcjl

i

tlF MPi
J -j--~

j+n,i - tl~ - bU~

i

MPi MPi n n
II.... ex .1' ) ex 0 0

= T Nj ~ ui.~ - (T-l ~ I: I: Rij \lq.l. q.l.
.I v=l U=l l.l "'V '+'l.l

o qO
MPi n , n n V

(T-1) T [ r Hi j-b Of- 2 r r R"'j i q1 b\I] + 2exl ij
U=l }l U=l \1=1 l.l "'u

o Clo
MPi n n qv n ow

(T-l) w ex
[- 2 r r \tiVj b

U q1 - ,,=I:
1

H.1Vi b \J]
u=1 V=1 "'v v

MPi", n n ~" ~ n n q; q;
"" v U U v+ (T-1) -ur [E E R \l i b b - r I: Rl.l\ljib T]

\l=1 u=1 J..l j \1=1 u=l

(i=j)

(i,ij)

(1 .:s. i ~ n) • (i 2. j 2. n)

FIGURE C-l Elements of the Jacobian Matrix
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l
·l:~~:~:TaC:~~::;::::~;~~:~i':~~:~·h:'~:':::':~/lY dCkrminant of the linearized system then

c...ntains coefficients that depend on steady displacemenls. Loads deriv~d from two­
dimensional incomprcssil>l~aerodynamic theo"ry arc used to obtain the majority of the
results. but cases using threc-dimensional subsonic compressi ule theory are also studied
The stability analysis is carried out in terms of the dynamically uncoupled natural modes
of vibration of the uniform .::antilever l>ynarnic stability in the case of incompressible
strip-theory airloads is determined in 0 ways. One is the "V-g method" familiar to
aeroclasticians. When steady deformati s are present this methoo requires an iterative
matching of flutter speeds with estimated eed. The second approach involves determi­
nation of the complex eigcnvalues of the ae elastic modes at any desired night condition.
The aerodynamic loads nre ex\,ressed in ter of the generalized Theodorsen function;
eigenvalues of the aeroelastic system are loca ed with a gradient search technique.
The effect of steady drag on flutter of nonliftin wIngs using incompressible strip-theory
is studied and sho....n to correlate .... ith previousl known results. Next. the influence of
steady lifting deformations on flutter is investiga d. and flutter modes are found that

Iinvolve fore-and-aft bend.ng motions. The signifi ance of unsteady leading edge suctioa
torces, which ar-e predicted by the two-dimensiona incompressible aerodynamic theory.

l
is then examkned. Two idealized examples based upon existing sailplanes are analyzed.
Steady drag loads lower the flutter speed for larger aspect ratios but increase it for
aspect rotios les~ than a certain value. Divergence SJU?d is more sensitive to steady
drag. and for very high aspect rotio wings it can fall below the bending-torsion flutter

I speed. Steady deformations due to lift al ways decrease the flutter speed by an amount
., dependent upon thle aspect ratio and the fore-and aft bending stiffness. Leading-edge

suction forces inc.rease flulter speed. Three-dimensional steady ilnd unsteady airleads
are ir,troduced into the V-g nutter analysis scheme. and for a Mach number of zero the

I role of steady lifting defct"mations and unsteady leading-edge suction forces is more
. accurately determined. The behavior predicted using strip theory load~ is again observe

and the suction forces are confirmed to contribute a significant stabilizing efrect. Fur-the
calculations using high subsonic ;'\ach numbers reveal only mild effects dlJe to compressi­
bility (disregarding unsteady cordwise loads of viscous origin).
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